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ABSTRACT 

A FORTRAN IV computer program was written that gives the blade-to-blade solu
tion of the two-dimensional, subsonic, compressible (or incompressible), nonviscous 
flow problem for a circular or  straight infinite cascade of tandem o r  slotted turboma
chine blades. The blades may be fixed or  rotating. The flow may be axial, radial, o r  
mixed. The results include streamline coordinates, velocity magnitude and direction 
throughout the passage, and the blade-surface velocities. The method is based on the 
stream function using an iterative solution of nonlinear finite-difference equations. 
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FORTRAN PROGRAM FOR CALCULATlNG VELOCITIES AND STREAMLINES 

O N  A BLADE-TO-BLADE STREAM SURFACE OF A 

TANDEM BLADE TURBOMACHINE 


by Theodore Katsanis and William D. McNally 


Lewis Research Center 


SUMMARY 


A FORTRAN IV computer program was  written that gives the blade-to-blade solution 
of the two-dimensional, subsonic, compressible (or incompressible), nonviscous flow 
problem for a circular or straight infinite cascade of tandem o r  slotted turbomachine 
blades. The blades may be fixed or rotating. The flow may be  axial, radial, o r  mixed, 
and there may be a change in stream-channel thickness in the through-flow direction. 

The program input consists of blade and stream-channel geometry, total flow condi
tions, inlet and outlet flow angles, blade-to-blade stream-channel weight flow, and the 
portion of this weight flow that passes between the front and rear tandem blades (through 
the slot). The output includes blade-surface velocities, velocity magnitude and direction 
at all interior mesh points in the blade-to-blade passage, and streamline coordinates 
throughout the passage. 

The method is based on the stream function. The simultaneous, nonlinear, finite-
difference equations of the stream function a r e  solved by using two major levels of iter
ation. The inner iteration consists of the solution of simultaneous linear equations by 
successive overrelaxation, using an estimated optimum overrelaxation factor. The outer 
iteration then changes the coefficients of the simultaneous equations to correct for com
pr  essibility. 

This report includes the FORTRAN IV computer program with an explanation of the 
equations involved, the method of solution, and the calculation of velocities. Numerical 
examples are included to illustrate the use of the program, and to show the results which 
are obtained. 



INTRODUCT10N 

An effort is being made to design compressors and turbines with smaller diameters, 
fewer stages, and fewer blades per stage. All these factors tend to increase diffusion. 
Therefore, it is desired to design blades with high diffusion, and at the same time to 
avoid flow separation. Several ideas for  aerodynamic design to permit high diffusion 
without separation are being investigated, both theoretically and experimentally. Two 
promising concepts a r e  the tandem blade and the slotted blade. 

In the design of tandem or  slotted blade rows for  compressors o r  turbines, an analy
sis is desirable which will  give velocity distributions from blade to blade, and particu
larly over the blade surfaces. Stanitz (refs. 1 and 2) has shown that finite-difference so
lutions of the stream-function differential equation can be used to obtain these results. 
Computer programs have been written which generate coefficients for  the difference equa
tions, solve the equations, and differentiate the resulting values of stream function to ob
tain velocities throughout the blade-to-blade passage and on the blade surfaces. This has 
been done previously by the first author (ref. 3) for a turbomachine with a single blade 
row without slots. 

This report extends the analysis of reference 3 to tandem o r  slotted blades. A com
puter program has been written to obtain the numerical solution for ideal, subsonic, com
pressible (or incompressible) flow f o r  an axial-, radial-, o r  mixed-flow circular cascade 
of turbomachine blades. The program may also be  used for  a straight infinite cascade. 
The blades may be overlapping o r  nonoverlapping in the meridional flow direction and may 
be fixed o r  rotating. The program may also be used to analyze a turbomachine with one 
set of splitter blades (see section Mixed-Flow Impeller, p. 12). The coordinates used 
are meridional streamline distance and angular coordinate in radians. 

This report includes the FORTRAN IV computer program (called TANDEM) that was  
developed, with an explanation of the equations involved and the method of solution. A 
tandem axial gas-turbine rotor cascade and a mixed-flow impeller a r e  analyzed to illus
trate the use of the program. The results obtained for  the axial turbine a r e  compared 
with experimental data. The impeller results a r e  compared with previous analytical re
sults. The report is organized so that the engineer desiring to use the program needs to 
read only the sections MATHEMATICAL ANALYSIS, NUMERICAL EXAMPLES, and 
DESCRIPTION OF INPUT AND OUTPUT. Information of interest to a programmer is 
contained in the sections DESCRIPTION OF INPUT AND OUTPUT and PROGRAM PRO
CEDURE and in the appendixes. 

A TANDEM source deck on tape is available from COSMIC (Computer Software 
Management and Information Center), Computer Center, University of Georgia, 
Athens, Georgia 30601. The program number can be obtained from the authors. 
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SYMBOLS 


A coefficient matrix, eq. (A7) 

a.. typical element of matrix A 
1J 


coefficients in eq. (A2) 

b stream-channel thickness normal to meridional streamline, meters 

b129 b34 quantities in eq. (A2) 

P 
specific heat at constant pressure, joule/(kg)(OK) 

h 

m 

n 

R 

r 

S 

T 

U 


U-

spacing between adjacent points, eqs. (Al) to (A4); see  fig. 17 

meridional streamline distance, see figs. 2 and 3 

number of unknown mesh points 

gas constant, joule/ (kg)YK) 

radius from axis of rotation to meridional stream-channel mean line, 
meters  

angular blade spacing o r  pitch, rad 

temperature, OK 

stream function 

discrete approximation to stream function at n mesh points, 

mth iterate of u-

3 


C 



V 

W 

W 

Z 

a 


P 
Y 


rl 

e 
h 

P 

!2 

w 

Subscripts: 

cr 

i 

in 

j 

le 

m 

out 

te 

e 
0, 1,2,3,4 

absolute fluid velocity, meters/sec 

fluid velocity relative to blade, meters/sec 

mass  flow per blade flowing through stream channel, kg/sec 

axial coordinate, meters  

angle between meridional streamline and axis of rotation, rad; see fig. 1 

angle between relative velocity vector and meridional plane, rad; see fig. 1 

specific-heat ratio 

outer normal to region 

relative angular coordinate, rad; see fig 1 

prerotation ('Vel 
in' 

meter sz/sec 
density, kg/meters 3 

overrelaxation factor, eq. (A8) 

rotational speed, rad/sec; see fig. 1 

critical velocity 

dummy variable 

inlet o r  upstream 

dummy variable 

leading edge 

component in direction of meridional streamline 

outlet or downstream 

trailing edge 

tangential component 

quantities at these locations infinite-difference expression, eqs. (Al) to 
(A6); see fig. 17 

Superscripts: 

T transpose of vector o r  matrix 

? absolute stagnation condition 

? ?  relative stagnation condition 
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MATHEMATICAL ANALYSIS 


' It is desired to determine the flow distribution through a stationary or rotating cas
cade of tandem blades on a blade-to-blade .surface. The following simplifying assump
tions are used in deriving the equations and in obtaining a solution: 

(1) The flow is steady relative to the blade. 
(2) The fluid is a perfect gas o r  is incompressible. 
(3) The fluid is nonviscous. 
(4) There is no loss of energy. 
(5) The flow is absolutely irrotational. 
(6) The blade-to-blade surface is a surface of revolution. (This does not exclude 

straight infinite cascades. ) 
(7) The velocity component normal to the blade-to-blade surface is zero. 
(8) The stagnation temperature is uniform across the inlet. 
(9) The velocity magnitude and direction is uniform across  both the upstream and 

downstream boundaries. 
(10) The relative velocity is subsonic everywhere. 

/
w2 = w2, f w i  
w2, = w; f w; 

Figure 1. - Cylindrical coordinate system and velocity components. 
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m 

/-Blade-to-blade 
surface 

Figure 2. - Blade-to-blade surface of revolution. 

Blade-to-: ,‘p
stream surface-’ 

_ _  - -4 

Figure 3. - Flow i n  a mixed-flow stream channel. 
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- - -  

The flow may be axial, radial,.or  mixed, and there may be a variation in the stream-
channel thickness b in the through-flow direction. The proportion of flow between the 
front and rear blades must be specified as an input to the program. This input may be 
difficult for the user to estimate; however, correlation with experimental work may yield 
more reliable values. 

The coordinate system is shown in figure 1. Since the variables r and z are not 
independent on a stream surface, one variable can be eliminated. Therefore, r and 8 
or  z and e could be  used as independent variables. However, for generality, it is 
better to use the meridional streamline distance m in place of r and z as an indepen
dent variable (see fig. 2). Then, m and e are the two basic independent variables. A 
stream channel is therefore defined by specifying a meridional streamline radius r and 
a stream-channel thickness b at several meridional locations m (see fig. 3). 

For the mathematical formulation of the problem, the stream function is used. The 
stream function u used herein is related to the stream function + defined in refer
ence 4by u = -+/w. With this substitution in equation 12(9) of reference 4 w e  obtained 
the basic differential equation which must be satisfied by the stream function under the 
given assumptions: 

The stream function u has the value 0 on the upper surface of the leading blade and 1on 
the lower surface of the leading blade. Also, the derivatives of the stream function sat
isfy the equations 

au - bpr 
ae w wm (3) 

For the solution of equation ( l ) ,  a finite region is considered (as indicated in fig. 4) 
with the condition that the flow along corresponding upper and lower portions of the bound
ary is the same. For example, the flow along AB is the same as along NM. Also, it is 
assumed that AN is sufficiently far upstream so  that the flow is uniform along this bound
ary, and that the flow angle pin is known. Similarly, it is assumed that the flow is uni
form along GH, and that the flow angle pout is known. For an actual blade row, pout 
may usually be determined by means of experimentally determined rules. Also, it is as
sumed the flow split is known; that is, the percentage of flow which passes between the 
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b B l a d e  surface 2 2 , . 

--Blade surface 3 

,-Blade surface 1 

(a) Overlap case. 

N M 

H 

[Blade surface 1
,-Blade surface 3 

(b) Nonoverlap case. 

Figure 4. -Typical f in i te  flow region. 

front and rear blades. Specifying Pout and the flow split is mathematically equivalent 
to specifying the locations of the stagnation points on the trailing edges of both blades. 

Since equation (1)is elliptic for subsonic flow, boundary conditions for the entire 
boundary ABCDEFGHLTKLMNA a r e  required. Along BC, u = 0; along LM, u = 1; along 
EF, u is equal to the negative of the fraction of weight flow through JKL; and along IJ, 
u is equal to the fraction of weight flow crossing a line joining C and J. Along AB, CD, 
FG, HI, KL, and MN, a periodic condition exists; that is, the value of u along MN, KL, 
and HI is exactly 1.0 greater than it is along AB, CD, and FG. The same condition holds 
along DE and J K  in the nonoverlagping case (fig. 4(b)). 

Along AN and GH, au/aq is known, where q is in the direction of the outer normal. 
From equations (2) and (3), since W o w m  = tan P ,  
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I 

Along AN and GH, 

where s is the angular blade spacing, so that 

These a r e  the boundary conditions required to determine a solution to  equation (1). The 
method used for the numerical solution of equation (1) is described in appendix A. The 
numerical solution involves two levels of iteration because equation (1)is nonlinear. The 
inner iteration is required to solve equation (1)when it is linearized, and the nonlinear 
solution is approached by the outer iteration. 

After computing a numerical solution to equation (1)in a given flow region, the ve
locity at any point can be computed from equations (2) and (3) by using numerical differ
entiation. The streamlines are located by the contours of equal stream -function values. 

NUMERICAL EXAMPLES 

To illustrate the use of the program and the type of results which can be obtained, 
two numerical examples are given. The first example is an axial-flow turbine and the 
other is a mixed-flow impeller. 

Axial-Flow Turbine Rotor Cascade 

This example is a two-dimensional axial-f low turbine cascade currently undergoing 
testing at Lewis Research Center. This blade is a modified version of a tandem blade 
reported in reference 5. It has a blunt leading edge on the rear blade in order to achieve 
a converging channel between the blades, and it has a wider slot than that reported in 
reference 5. 

The blade shape in m, 0 coordinates and the blade-to-blade solution region are 
shown in figure 5. Input for this example is given in table I. Blade-surface velocities 
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Meridional streamline distance, m, centimeters 

Figure 5. - Blade-to-blade flow region for tandem axial turbine rotor. 



TABLE I. - INPUT FOR AXIAL-FLOW TURBINE ROTOR CASCADE 

M D D I F I E O  TANOEM 4 X I 4 L  TURBINE R O T O R  
S A M  A R  T I P  R H O I P  WTFL WTFLSP OMEGA ORF 

I . 4 0 0 0 0 0 0  2 8 7 . 0 5 3 0 0  2 8 8 . 1 5 0 0 0  1 . 2 2 5 0 0 0 0  0 . 3 1 5 2 0 0 0 E - 0 1  0 . 1 1 3 4 7 0 0 E - 0 1  -0 0 
B E T A  I AETACI CHOROF STGRF CHORDR STGRR MLER THLER 

48.000000 - 4 7 . 0 0 0 0 0 0  0 . 2 8 4 7 0 0 0 E - 0 1  0 . 2 1 3 3 3 0 0 E - 0 1  0.25150006-01 - 0 - 5 4 5 9 0 0 0 E - 0 1  0 . 2 4 4 1 0 0 0 E - 0 1  - 0 . 3 6 0 7 0 0 0 E - 0 2  
MBI MBO MR12 MBO2 MM V B B I  NBL NKSP 
10 3 2  2 9  4 9  5 8  20 7 6  2 

--RLAOE SURFACE 1 UPPER SUKFACE - FRONT BLADE 
R I  1 ?O 1 R E T 1  1 B E T 0 1  S P L N 0 1  

0 . 7 6 2 0 0 0 0 E - 0 3  0 . 3 8 1 0 0 0 0 E - 0 3  5 0 . 0 0 0 0 0 0  - 2 9 . 4 0 0 0 0 0  7.0 00 0000 
M S P l  A R R A Y  

-0 0 . 2 5 7 0 0 0 0 E - 0 2  0 . 7 6 5 0 0 0 0 E - 0 2  0 . 1 5 2 7 0 0 0 E - 0 1  0 . 2 0 3 5 0 0 0 E - 0 1  0 . 2 5 4 3 0 0 0 E - 0 1  -0 
T H S P l  A R R A Y  

-0 0.Y250000E-02 0 . 2 1 1 8 0 0 0 E - 0 1  0 . 2 9 8 8 0 0 0 E - 0 1  0 . 3 0 2 0 0 0 0 E - 0 1  0 . 2 6 4 3 0 0 0 E - 0 1  -0 

--BLADE SURFACE 2 LOWER SURFACE - FRONT BLADE 
R I 2  R02 B E T 1 2  B E T 0 2  SPLNOZ 

0 . 7 6 2 0 0 0 0 E - 0 3  0 . 3 8 1 0 0 0 0 E - 0 3  2 5 . 0 0 0 0 0 0  - 6 . 9 0 0 0 0 0 0  5 . 0 0 0 0 0 0 0  
MSPZ A R R A Y  

-0 0 . 7 6 5 0 0 0 0 E - 0 2  0 . 2 0 3 5 0 0 0 E - 0 1  0 . 2 5 4 3 0 0 0 E - 0 1  -0 
THSPZ A R R A Y  

-0 0 . 7 1 4 0 0 0 0 E - 0 2  0 . 2 0 3 9 0 0 0 E - 0 1  0 . 2 0 9 4 0 0 0 E - 0 1  -0 

--BLPOE SURFICE 3 UPPER SURFACE - R E A R  @LADE 
R 1 3  a 0 3  R E T I 3  B E T 0 3  SPLNO3 

0 .177ROOOE-02 ~ 0 . 3 8 1 0 0 0 0 E - 0 3  -8.1000000 - 4 8 . 8 0 0 0 0 0  4 . 0 0 0 0 0 0 0  
MSP3 P R R A Y  

0 0 . 6 1 0 0 0 0 0 E - 0 2  0 . 1 6 2 6 0 0 0 E - 0 1  0 
THSP3 A R R A Y  

0 0 . 1 6 4 0 0 0 0 E - 0 2  - 0 . 2 4 6 3 0 0 0 E - 0 1  0 

--BLADE SURFACE 4 LOWER SURF4CE - R E A R  BLADE 
R 1 4  R 0 4  B E T 1 4  B E T 0 4  SPLYO4 

0.1778000E-02 0 . 3 8 1 0 0 0 0 E - 0 3  - 1 9 . 7 0 0 0 0 0  - 4 2 . 5 0 0 0 0 0  4 . 0 0 0 0 0 0 0  
MSP4 A R R A Y  

0 0 . 6 1 0 0 0 0 0 E - 0 2  0 . 1 3 7 2 0 0 0 E - 0 1  0 
THSP4 ARRAY 

0 


HR A R R A Y  
-1.0000000 

RMSP A R R A Y  
0.3238500 


BESP ARSAY 
0 . 1 0 0 0 0 0 0 E - 0 1  

BLDAT AANDK 
CI 1 1w 

-0.1200000E-01 - 0 . 2 7 4 5 0 0 0 E - 0 1  0 

1 . 0 0 0 0 0 0 0  

0 . 3 2 3 8 5 0 0  

0.1000000E-01 

ERSOR STRFN SLCRD I N T V L  SURVL 
2 2 2 2 3 
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Figure 6. - Surface velocities on tandem axial turbine blade. 

are plotted in figure 6, where comparison is made with unreported experimental data for  
the Lewis turbine cascade. There is close agreement between computed and experimental 
values on all four blade surfaces. 

Execution time w a s  10 minutes for this example, and it required 16 outer iterations 
for final convergence to the compressible solution. 

Mixed- Flow ImpelI er 

This example is taken from reference 6. In reference 6 a similar stream-function 
analysis was made. The mesh w a s  set up graphically, and the coefficients were calcu
lated by hand. The solution of the finite-difference equations was obtained by relaxation 
on a computer. The analysis was done on a blade-to-blade surface of revolution midway 
between hub and shroud. 

The coordinates of the stream channel and the stream-channel radial thickness are 
given by equations (1)and (2)of reference 7. The radial stream-channel thickness was 
corrected to obtain the normal thickness required by this program. The hub-shroud pro
file is shown in figure 7. The blade shape and mesh arrangement are shown in figure 8. 
Input for this example is given in table II. In figure 9 the blade-surface velocities ob
tained by the TANDEM program are compared with those obtained originally in refer
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TABLE II. - INPUT FOR MEED-FLOW IMPELLER 

M I X E D  FLJW IMPELLER ( V A S A  TN 0 - 1 1 8 6 1  
G A M  4R T I P  RHO I P WTFL WTFLSP OMEGA ORF 

1.50000OO 1000.0000 1000000.0 1.0000000 0.3042000E-02 0.1351600E-02 796.00000 0 
BETA1 BETA3 CHORDF STGRF CHOROR STGRR MLER THLER 

-84 .88oono -43 .000000 0 .1055500 -2 .6290000 0 .5664000E-01 -0 .6649000 0 .4891000E-01 -2 .3434000 
ME1 460 MRI?  WBO2 MM VI331 NBL NRSP 
10  4 7  28 47  57  28 8 18 

--w a o E  SURFACE i UPPER SURFACE - FRONT BLADE 
R I  1 40 1 RET11 BET01 SPLNOl  

0 .9140000E-03 0 .1846000E-02 - 8 0 . 0 0 0 0 0 0  - 4 9 . 0 0 0 0 0 0  6 . 0 0 0 0 0 0 0  
HSP l  A R R A Y  

0 0 . 1 2 1 4 0 0 0 E - 0 1  0 .2651000E-01 0 . 4 7 6 6 0 0 0 E - 0 1  0 . 7 3 6 0 0 0 0 E - 0 1  0 
THSPl A R R A Y  

0 -0 .6250000 - 1 . 2 3 3 0 0 0 0  -1.8 1 8 2 0 0 0  -2 .2750000 0 
- .  

I IL40E SURFACE 2 --' L3WER SURFACE - F R O Y T  BLADE 
R12 R O Z  RET12 BET02 SPLYOZ 

0 .9140000E-03 0.1846000E-02 -83.000000 -41 .500000 6. noooooo 
MSPZ A K S A Y  

0 0.7880000E-02 0 . 2 0 0 4 0 0 0 E - 0 1  0 . 4 0 0 6 0 0 0 E - 0 1  0 .6828000E-01 0 
THSP2 A9RAY 

0 -0.6310000 -1 .2310000 -1 .8206000 -2 .2954000 0 

--RLADE SURFACE 3 UPPER SURFACE - R E A R  SLAOE 
9 1 3  9 0 3  B E T I 3  BET03 SPLN03 

0 .1328000E-02 0.1753000E-02 -60 .500000 - 5 1 . 5 0 0 0 0 0  6.000 0000 
HSP3 AZ9AY 

0 O . ~ ~ O T O O O E - O ~  O . Z S S Z O ~ O E - O ~  O . ~ ~ ~ Z O O O E - O ~O . ~ ~ ~ O O O O E - O ~o 
THSP3 A9RAY 

0 - 0 . 1 6 7 0 0 0 0  -0 .3370000 - 0 . 5 2 6 2 0 0 0  -0 .6269000 0 

--PLADE S U R F t C E  4 LJWER SURFACE - REAR RLAOE 
R14 7 0 4  BET14 BET04 SPLVO4 

o . i 3 2 8 o n o ~ - o 2  o . i 7 5 3 o o o ~ - o z  - 6 3 . o o o o o o  -40 .500000 5 . 0 0 0 0 0 0 0  
MSP4 A X P A Y  

0 0 . 1 0 7 3 0 0 o ~ - o i  0 . 2 4 9 3 0 n o ~ - n i  o . ~ ~ ~ ~ o o o E - o ~0 
THSP4 4RRAY 

0 

Y R  4 R R 4 Y  
- 0 . 3 1 2 4 0 0 0 E - 0 1  

0 . 5 i i 5 0 n o ~ - o i  
0 .1272600 

R M S P  AdRAY 
0 . 7 5 8 6 0 0 0 E - 3 1  
0 . 9 4 4 7 0 0 0 E - 0 1  
0 .1360200 

R E S P  A Y S A Y  
0 . 1 J 5 3 3 0 0 � - ~ 1  
O.323500OE-02 
0.8250000E-03 

HLOAT A A V D K  
1 1 

-0.L010000 -0 .40700no -0.581 9000 0 

- 0 . 1 5 1 4 0 0 0 E - 0 1  0 .2500000E-03 0 .1065000E-01 0 .1853000E-01 0 .2651000E-01 0 .3460000E-01 0.4281000E-01 
0 . 5 9 6 4 5 0 0 E - 0 1  0 . 6 8 2 8 0 0 0 E - 0 1  0 .7709000E-01 0 .8607000E-01 0 . 9 5 2 4 0 0 0 E - 0 1  0.1046100 0 .1141700 
0 .1407300 

3 . 7 6 6 2 0 0 o ~ - o i  0 . 7 8 7 4 0 n o ~ - n i  O . B O ~ ~ O O O E - O ~  0 . 8 2 9 4 0 0 o ~ - o i  O . B ~ ~ ~ O O O E - O ~O.~~OZOOOE-OI 0.9108000E-01 
O . ~ ~ ~ O O O O E - O ~0.1022800 0 .1067400 0 . 1 1 1 4 6 0 0  0 . 1 1 6 5 6 0 0  0.1220000 0.1277800 
0 .1449700 

0 .1004500E-01 0 . 8 7 2 4 0 0 0 E - n 2  0 .7420000E-02 0 .6316000E-02 0-5354OOOE.-O2 0.4532000E-02 0.3831000E-02 
0.2728OOOE-02 0 .229900OE-02 0 .1936000E-02 0 .1629000E-02 0 .1370000E-02 0.1151000E-02 0 .9790000E-03 
0.72400OOE-03 

E9SOR STRFY SLCRO I Y T V L  SURVL 
2 2 2 2 3 
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Ref. 6 
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(a) Full blade. 

Figure 9. -Velocity distribution for mixed-flow pump impeller. 
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ence 6. There is good agreement over most of the blade. Minor discrepancies are prob
ably due to slight differences in the boundary conditions (weight flow split and downstream 
flow angle). The heights of the peaks near the leading edges are uncertain because the 
radii are small  compared to the mesh spacing. 

Execution time was 2 minutes for  this example. It required only one outer iteration, 
since flow w a s  incompressible. 

DESCRIPTION OF INPUT AND OUTPUT 

The computer program requires as input a geometrical description in m, 0 coordi
nates of the tandem blade segments, a description in m, r coordinates of the stream 
channel through the blades, appropriate gas constants, and operating conditions such as 
inlet temperature and density, inlet and outlet flow angles, weight flow, and rotational 
speed. An estimate of the portion of the weight flow which passes between the tandem 
blades must also be given. Output obtained from the program includes velocity magnitude 
and direction at all interior mesh points in the blade-to-blade passage, blade-surface 
velocities, stream -function values throughout the blade-to-blade region of solution, and 
streamline locations. 

Input 

Figure 10 shows the input variables as they a r e  punched on the data cards. The 
f i r s t  input data card is for a title, which wi l l  serve for problem identification. The 
remaining cards are for input variables. There a r e  two types of variables, geometric 
and nongeometric. The geometric input variables a r e  shown in figures 11 to 13. Fur
ther explanation of the input variables is given in the section Instructions for  Prepar
ing Input. 

The input variables are as follows: 

GAM specific-heat ratio, y 

AR gas constant, joule/(kg)(OK) 

TIP inlet total temperature, Tin, 0K 

RHOIP inlet total density, p h ,  kg/meter 3 

WTFL mass  flow per blade for stream channel, kg/sec 

WTFLSP portion of stream-channel mass  flow per blade which flows across  
the boundary JKL between the front and rear blades, kg/sec; see 
fig. 11 
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1 516 10111 15116 20121 25126 30131 35136 ,40141 50151 60161 701 71 80 
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Figure 10. - Input form. 
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Figure 11. - Geometric input  variables for blade-to-blade flow region. 
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must be given as t r u e  angle p, not as angles measured in  m ,  0 plane. Either use 
tan p = r deldm to obtain p, o r  measure the  t r u e  angle. 

,- Outlet of 

,/ f ron t  blade 
rTrail ing edge ofr Leading edge of 

Leading edge of  i f ront  blade Trailing edge of // region 

I , .  . 
.-Inlet nf reoinn I 

I 

- -4  
Figure 13. - Geometric inpu t  variables describing stream-channel in meridional plane. 

OMEGA rotational speed, w, rad/sec (Note that w is negative if rotation is 
in the opposite direction of that shown in fig. 1.1 

ORF value of overrelaxation factor Si? to be used in equation (A8) (If 
O W  = 0, the program calculates an estimated value for the over-
relaxation factor; see p. 25 and appendix A for  discussion. ) 

BETA1 inlet flow angle (Ile along BM with respect to m-direction, deg; see 
fig. 11 

BETA0 outlet flow angle pte along FI with respect to m-direction, deg; see 
fig. 11 

CHORDF overall length of front blade in m-direction, meters; see fig. 11 
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STGRF 

CHORDR 


STGRR 


MLER 

THLER 

MBf 


MBO 


MB12 


MB02 


MM 


NBBI 

NBL 

NRSP 

RI1, R12, 

R13, R14 


RO1, RO2, 

RO3, R04  


BETI1, BETI2, 
BETI3, BETI4 

BETO1, BETO2, 
BET03, BET04 

angular 0-coordinate for  center of trailing-edge circle of front blade 

with respect to center of leading-edge circle of front blade, rad; 

see fig. 11 


overall length of rear blade in m-direction, meters; see fig. 11 

angular 0 -coordinate for  center of trailing-edge circle of r ea r  blade 

with respect to center of leading-edge circle of rear blade, rad; 

see fig. 11 


m-coordinate of leading edge of rear blade with respect to leading 

edge of front blade, meters; see fig. 11 


angular 8-coordinate of leading edge of rear blade with respect to 

leading edge of front blade, rad; see fig. 11 


number of vertical mesh lines from AN to BM inclusive; see fig. 11 

number of vertical mesh lines from AN to CL inclusive; see fig. 11 

number of vertical mesh lines from AN to EJ inclusive; see fig. 11 

number of vertical mesh lines from AN to FI inclusive; see fig. 11 

total number of vertical mesh lines in m-direction from AN to GH, 

maximum of 100; see fig. 11 


number of mesh spaces in 8-direction between AB and MN, maxi


mum of 50; see fig. 11 


number of blades 

number of spline points for stream-channel radius (RMSP) and thick


ness (BESP) coordinates, maximum of 50; see fig. 13 


leading-edge radii of the four blade surfaces, meters; see fig. 12 

trailing-edge radii of the four blade surfaces, meters; see fig. 12 

angles (with respect to m-direction) at tangent points of leading-edge 
radii with the four blade surfaces, deg; see fig. 12 (These must 
be true angles in degrees. If angles (i.e., de/dm) are measured 
in the m, 0 plane, BETI1,2 ,3 ,4  can be obtained from the relation 
tan p = r dO/dm.) 

angles (with respect to m-direction) at tangent points of trailing-edge 
radii with the four blade surfaces, deg; see fig. 12 (These must 
also be true angles in degrees, like BETI1,2,3,4.  ) 
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SPLNO1, SPLNO2, 
SPLNO3, SPLNO4 

MSP1, MSP2, 
MSP3, MSP4 

THSP1, THSP2, 
THSPS, THSP4 

MR 

RMSP 

BESP 

number of blade spline points given for each surface as input, maxi
mum of 50 (These include the first and last points (dummies) that 
are tangent to the leading- and trailing-edge radii (fig. 12).) 

a r rays  of m-co,ordinates of spline points on the four blade surfaces, 
measured from blade leading edges, meters; see fig. 12 (The 
first and last points in each of these a r rays  can be blank or  have a 
dummy value, since these points a r e  calculated by the program. 
If blanks are used, and the last point is on a new card, a blank 
card must b e  used. ) 

ar rays  of e-coordinates of spline points corresponding to MSP1, 
MSP2, etc., rad; see fig. 12 (Dummy values a r e  also used in 
positions corresponding to those in MSP1, MSP2, etc.) 

array of m-coordinates of spline points for  stream-channel radii 
and stream-channel thicknesses, meters; see fig. 13 (MR is 
measured from leading edge of front blade. These coordinates 
should cover the entire distance from AN to GH and may extend 
beyond these bounds. The total number of points is NRSP. ) 

array of r-coordinates of spline points for stream -channel mean 
streamline, corresponding to the MR array, meters; see fig. 13 

array of stream-channel normal thicknesses corresponding to the 
MR and RMSP arrays,  meters; see fig. 13 

The remaining variables, starting with BLDAT, are used to indicate what output is 
desired. A value of 0 for any of these variables wil l  cause the output associated with that 
variable to be omitted. A value of 1wil l  cause the corresponding output to be printed for 
the final outer iteration only; a value of 2, for the first and final iterations; and a value 
of 3, for all outer iterations. Care should be used not to call for more output than is 
really useful. The following list gives the output associated with each of these variables: 

BLDAT all geometrical information which does not change from iteration to iteration; 
i. e . ,  coordinates and first and second derivatives of all blade-surface 
spline points; blade coordinates and blade slopes where vertical mesh lines 
meet each blade surface; radii and stream-channel thicknesses corresponding 
to each vertical mesh line; m-coordinate, stream-channel radius and thick
ness, blade-surface angles and slopes where horizontal mesh lines intersect 
each blade; and ITV and IV arrays (internal variables describing the location 
of the blade surfaces with respect to the finite-difference grid) 
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AANDK coefficient a r ray  A, vector -k, and indexes of all adjacent points for each 
point in the finite-difference mesh (This information is needed only for  de
bugging the program. ) 

ERSOR maximum change in stream function at any point for each iteration of SOR 
equation (eq. (A8)) 

STRFN value of stream function at each unknown mesh point in region 

SLCRD streamline 0-coordinates at each vertical mesh line, and streamline plot 

INTVL velocity and flow angle at each interior mesh point 

SURVL m-coordinate, surface velocity, flow angle, distance along surface, and 
W/Wcr based on meridional velocity components where each vertical mesh 
line meets each blade surface; m-coordinate, surface velocity, flow angle, 
distance along surface, and W/Wcr based on tangential velocity components 
where each horizontal mesh line meets each blade surface; plot of blade-
surface velocities against meridional streamline distance, m (It is suggested 
that SURVL = 3 be used. This wil l  give surface velocities after each outer 
iteration, so that satisfactory velocities may be obtained even when final con
vergence is not reached. ) 

Instructions for Preparing Input 

Units of measurement. - The International System of Units (ref. 8) is used through-~~ 

out this report. However, the program does not use any constants which depend on the 
system of units being used. Therefore, any consistent set of units may be used in pre
paring input for the program. For example, if force, length, temperature, and time are 
chosen independently, mass  units a r e  obtained from force equals mass  times accelera
tion. The gas constant R must then have the units of force t imes length divided by mass 
times temperature (energy per unit mass  per deg). Density is mass per unit volume, and 
weight flow is mass  per unit time. Output then gives velocity in the chosen units of length 
per unit time. Since any consistent set of units can be employed, the output is not labeled 
with any units. 

Blade and stream-channel geometry. - The upper and lower surfaces of the front and. 

rear tandem blades are each defined by specifying three things: leading- and trailing-edge 
radii, angles at which these radii are tangent to the blade surfaces, and m- and 0 
coordinates of several points along each surface. These angles and coordinates are used 
to define a cubic spline curve f i t  (ref. 9) to the surface. The standard sign convention is 
used for  angles, as indicated in figure 12. 
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A cubic spline curve is a piecewise cubic polynomial which expresses mathematically 
the shape taken by an idealized.spline passing through the given points. Reference 9 de
scribes a method for  determining the equation of the spline curve. When this method is 
used, few points are required to specify most blade shapes accurately, usually no more 
than five or  six, in addition to the two end points. As a guide, enough points should be 
specified so that a physical spline passing through these points would accurately follow 
the blade shape. This means that the spline points should be  closer where there is large 
curvature and farther apart where there is small curvature. 

The coordinates fo r  either surface of a particular blade segment are given with re
spect to the leading edge of that segment, the leading edge being defined as the furthest 
point upstream on the blade segment. 

The mean stream surface of revolution (as seen in the meridional plane, fig. 13) and 
the stream-channel thickness are also fitted with cubic spline curves. The m-coordinates 
fo r  the mean stream surface are independent of the m-coordinates for blade surfaces. 

Inlet and outlet flow angles. - The values of ple and pte are given as average val
- - .. _ _  - 

ues on BM and FI, respectively. If the flow is axial, these flow angles are the same as 
the flow angles at AN and GH. If flow is radial o r  mixed, and these angles a r e  not known 
on BM and FI, p, and pte must be calculated by equation (B14). 

Defining mesh. - A finite-difference mesh is used for the solution of equation (1). A 
typical mesh pattern (that used in example 1)is shown in figure 14. The mesh spacing 
and the extent of the upstream and downstream regions are determined by the values of 
MBI, MBO, MBI2, MB02, and MM of the input (fig. 10). The mesh spacing must be cho
sen so that there a r e  not more than 2000 unknown mesh points. 

Values of MBI, MB02, e tc . ,  should be determined so that the mesh which results has 
blocks which a r e  approximately square. To achieve this, a value for  NBBI is first chosen 
arbitrarily (15 to 20 is typical). NBBI is the number of mesh spaces spanning the blade 
pitch s, where s = 27r/NBL. Dividing s by NBBI gives the mesh spacing HT in the 0 
direction in radians, Multiplying HT by an average radius (RMSP) of the stream channel 
gives an average value for the actual mesh spacing in the 0-direction. CHORDF, 
CHORDR, and MLER should then be used with this tangential mesh spacing to calculate 
the approximate number of mesh spaces in the various regions along the meridional axis. 
This wil l  give MBO, MBI2, and MB02, once MBI is chosen. Generally, MBI is given a 
value of 10; MM, likewise, is usually given a value 10 more than MB02. 

Overrelaxation factor. - ORF is the relaxation factor used in each inner iteration in 
the solution of the simultaneous finite-difference equations (A7). ORF may be set  equal 
to 0, or to some value between 1and 2. ORF is usually given as 0 for the initial run of a 
given blade geometry and mesh spacing (MBI, NBBI, etc.). In this case the program 
uses extra time and calculates an optimum value for  ORF. It does this by means of an 
iterative process, and on each iteration the current estimate of the optimum value for 
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Figure 14. -Mesh used for axial-f low-turbinenumerical example. Numbers are mesh point indexes ( IP  i n  program). There are 1053 unknown mesh points. 



ORF is printed. The final estimate is the one used by the program for ORF. If the user 
does not change the mesh indexes MBI, MBO, MBI2, MB02, MM, and NBBI between runs, 
even though blade geometry o r  other input does change, he may use this final estimate of 
ORF in the input, saving the time used in its computation. In all cases, if ORF is not 0, 
it should have a value greater than .1 and less  than 2. 

Actually, the value of ORF is not as critical as the user might think. It gets more 
critical as the optimum value gets close to 2. For any run of a given set of data, only 
small changes wil l  occur in the rate of convergence in SOR as long as the difference 
2.0 - ORF is within 10 percent of its optimum value. A further theoretical discussion 
of the overrelaxation factor is presented in reference 11 (p. 78). 

Format for input data. - All the numbers on the card beginning with MBI and on the 
card beginning with BLDAT are integers (no decimal point) in a five-column field (see 
fig. 10). These must all be right adjusted. The input variables on all other data cards 
are real  numbers (punch decimal point) in a ten-column field. 

Incompressible flow. - While the program is written for compressible flow, it can 
be easily used for incompressible flow. To do so, specify GAM = 1 .5 ,  AR = 1000, and 
TIP = 106 as input. This results in a single outer iteration of the program to obtain the 
stream -function solution. 

Straight infinite cascade. - The program is as easily applied to straight infinite cas
cades a s  to circular cascades. Since the radius and number of blades (NBL) for such a 
cascade would actually be infinite, an artificial convention must be adopted. The user 
should pick a value for  NBL, for instance 20 or  30. Then, since the blade pitch equal to 
sr is known, an artificial radius can be computed from 

r = NBL *(sr) 
27r 

This r should be used to compute the 8-coordinates required as input (THSP1, . . - 9  

THSP4, STGR1, STGR2, THLEB) by dividing coordinates in the tangential direction by 
r. 

Axial flow. - For a two-dimensional cascade with constant stream-channel thickness, 
constant values should be given for the RMSP and BESP arrays. Only two points 
are required for each of these a r rays  in this case. The two values of MR should be 
chosen so that they are further upstream and downstream than the boundaries AN and GH. 
The two values of RMSP and BESP should equal the constants r and b. 

Sample output is given in table 111for the axial-flow turbine example. Since the com
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plete output would be lengthy, only the first few lines of each section of output are repro
duced herein. Most of the output is optional and is controlled by the final input card, as 
already described. In many instances output labels are simply internal variable names 
which are defined in the Main Dictionary. 

Each section of the sample output in table III has been numbered to correspond to the 
following description: 

(1) The first output is a listing of the input data. All items are labeled as on the in
put form (fig. 10). 

(2) This is the output corresponding to BLDAT. (See the list of input variables 
and the Main Dictionary for variable name definitions. ) 

(3)The relative free-stream velocity W, the relative critical velocity Wcr, and 
the maximum value of the mass flow parameter pW (corresponding to W = Wcr) are 
given at the leading edge of the front blade (BM) and the trailing edge of the rear blade 
(FI). The inlet (outlet) free-stream flow angle p, (pout) at boundary AN (GH) is given. 
These angles are based on the input angles BETA1 @le) and BETA0 Qte). 

(4) These are calculated program constants, including the pitch from blade to blade, 
the mesh spacing in all solution regions, the minimum and maximum values of IT in the 
solution region (ITMIN and ITMAX), and the value of the prerotation h (eq. (B8)). 

(5) This is the number of mesh points in the entire solution region at which the 
stream function is unknown. 

(6) This is the boundary value (BV) of the stream function on each of the four blade 
surf aces. 

(7) This is the output corresponding to AANDK. 
(8) If the program calculates an optimum overrelaxation factor C2 (i.e., ORF = 0 in 

the input), the successive estimates to the optimum value of ORF are printed. The last 
printed value of the estimated optimum ORF is the value of 52 (ORF)used by the program. 

(9) This is the output corresponding to ERSOR. 
(10)This is the output corresponding to STRFN. 
(11) This is the total execution time after obtaining the stream-function solution 

for each outer iteration. 
(12) This is the output corresponding to SLCRD. 
(13)This is the output corresponding to INTVL. 
(14) This gives the maximum relative change in the density p for each outer itera

tion. 
(15) This is the output corresponding to SURVL. 
(16) This is the total execution time after all calculations a r e  completed for  an outer 

iteration. 
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TABLE III. - SAMPLE OUTPUT 

MJOIFIEO TANDEM AXIAL TURBINE ROTDR 
S A M  AR TIP RHOlP WrFL 

1.4000000 2 8  7.05 300 288.15000 1.2250000 0.3152000E-01 
BETA1 RET87 CHOROF STGRF CHOROR 

4n.oooono -47.000000 0-284700OE-01 0.2133300E-01 0.2515000E-01 
M B I  MBJ MRI2 MB02 MM '4881 N8L NRSP 
10 32 29 49 58 20  76  2 

BLAOE SURFACE 1 UPPER SURFACE - FQOYT BLAOE 
R I  1 RO 1 BET11 BET01 SPLNOl 

0.7620000E-03 0.3810000E-03 50.000000 -29.400000 7.0000000 
MSPl & * P A Y  

-0 0.2570000E-02 0.7650000E-02 0.1527000E-01 0.2035000E-01 
THSPl A R R A Y  

-0 0-9250000E-02 0.211800OE-01 0.298800OE-01 0.3020000E-01 

BLAOE SURFACE 2 LJWER SURFACE - FQONT BLAOE 
51 2 -lo2 B E T I Z  B E T 0 2  SPLV02 

0.76200006-03 0.38lOOOOE-03 25.000000 -6.9000000 5.0000000 
MSP2 AR9AY 

-0 0.7650000E-02 0.2035000E-01 0.2543000E-01 -0 
THSP2 ASRAY 

-0 0.7140000E-02 0.2039000E-01 0.2094000E-01 -0 

ULAOE SURFACE 3 UPPER SURFACE - REAR BLAOE 
113  <03 BE TI^ BET03 SPLVO3 

0 ~ 1 7 7 8 0 0 0 E - 0 2  0.3810000E-03 -8.1000000 -48.800000 4.0000000 
MSP3 A R R A Y  

0 0.6LOOOOOE-02 0.1626000E-01 0 
THSP3 ASRAY 

0 O . I ~ ~ O O ~ O E - O ~  -o .2463000~-01 o 

BLAOE SURFACE 4 LJWER SURFACE - REAR RLAOE 
514 R04 BET14 BET04 SPLVO4 

0.1778000E-02 0.3810000E-03 -1'4.700000 -42.500000 4.00000 00 
M C P 4  A R R A Y. . .  

0 0.6lOOOOOE-02 0.1372000E-01 0 
THSP4 A R R A Y  

0 -0.1200000E-01 -0.2745000E-01 0 

Y R  A R R A Y  
-1.0000000 I. 0000000 

RMSP A R R A Y  
0.3238500 0.3238500 

BESP A R R A Y  
O.IOOOO0OE-01 0.1000000E-01 

DLOAT AAVOK E R S J R  STRFN SLCRO INTVL SURVL 
1 1 2 2 2 2 3 

WTFLSP OMEGA ORF 
0.1134700E-01 -0 0 

STGRR MLER THLER 
-0.5459000E-01 0.2441000E-01 -0.3607000E-02 

0.2543000E-01 -0 

0-Zb43000E-01 -0 

1 



VEL3CITY FOR RHO*W 
LEADING EOGE 5-H 161.064 241.239 
TRAILIUG EDGE F-1 157.135 741.239 

w 
0 


TABLE III. -Continued. SAMPLE OUTPUT 

BLADE 04TA 4 1  INPUT SPLINE POINTS 

Y 
0.17827F-03 
0.25700E-02 
0.76500E-02 
0.15270F-01 

, 0.20350E-01 
0.25430E-01 
0.28276E-01 

Y 
0.25589E-01 
0.30510E-01 
0.3813OF-01 
0.48922E-01 

c 


f 

BLADE SURFACE 1 
THETA DERIVATIVE 

0.15124E-02 3.67996 
0.92500E-02 2.88161 
0.21 1BOE-01 1.83901 
0.29880E-01 0.47565 
0.30200E-0 I -0.33906 
0.26430E-01 - 1.15680 
0.2235BE-01 -1.73991 

BLADE SURFACE 2 
THETI\ DERIVATIVE 

0.80541E-01 1.43989 
0.83813E-01 1.38132 
0.10306 0.43322 
0.10361 -0.18877 
0.10284 -0.37367 

BLADE SURFACE 3 
THET4 DERIVATIVE 

0.18284E-02 -0.43947 
-0.13670E-02 -1.49683 
-0-28237E-01 -3.17480 
-0.57422E-01 -3.52722 

BLADE SURFACE 4 
THE14 DER1VAT1 V E  

0.7389RE-01 -1.10561 
0-67066E-01 -1.66752 
0.51616E-01 -2.31958 
0.23609E-01 -2.82949 

2ND UERIV. 
-448.310 
-219.276 
-191.199 
-166.638 
-154.115 
-167.828 
-241.946 

2ND DERIV. 
-7.45650 
-10.3836 
- 1  38.924 
-105.953 
-35.5599 

ZNU OERIV. 
-206.721 
-312.681 - 17.6280 
-62.5065 

2NO DERIV. 
-116.003 
-112.352 
-58.7926 
-35.7093 

FREESTREAM MAXIMUM VALUE CRITICAL 
VEL3CITY FOR RHO*W VELOCITY 

BETA CORRECTED 
TO BOUNDARY 

BOUNDARY A-N 48.0000 
BOUNDARY G-H -41  -0000 

LEADING EOGE 5-H 161.064 241.239 310.645 
TRAILIUG EDGE F-1 157.135 741.239 310.645 

CALCULATED PRDGRAY COVSTANTS 

PITCH HT HM1 HH2 HM3 
0 -8267349E-01  0.4133675E-02 0.12847 ?E-02 135 -02 I 12405 E-0 

ITMIN ITHAX 
-14 25 

LAMBDA 
38.762794 



5 NUMBER OF INTERIOR MESH P O I N T S  = 1053 

SURFACE 8OUNOARY VALUES 

SURFACE BV 
1 0. 
2 1.00000 
3 -0.35999 

0.64001 

r BLADE DATA A T  IITERSECTIONS OF VERTICAL MESH LINES WITH BLADES 

BLADE SURFACE 1 BLADE SURFACE 2 
Y rv  OTOMV T V  DTDMV 

0 0 0-10000E 11 0.82673E-01 -0.10000E 11 
0-12847E-02 0.53314E-02 3.24254 0.80830E-01 1.43838 
0.25695F-02 0.92485E-02 2.88173 0.82671E-01 1.42832 
0-3854ZE-02 0.12772E-01 2.60458 0.84500E-01 1.41752 
0.51389E-02 0.15945E-01 2.33654 0.86313E-01 1.40599 

STREAM SHEET ZODROINATES AN0 THICKNESS TAELE 
e 

2 -0.10278E-01 0.32385 -0 0.lOOOOE-01 -0 
3 -0.89932E-02 0.32385 -0 0.10000E-01 -0 
4 -0.77084E-02 0.32385 -0 0.10000E-01 -0 

~ 5 -0.64237E-02 0.31385 -0 0.10000E-01 -0 

1';
2 

-0.1:563E-01 0.3;385 -0 
SAL 

0.10000E-01 -0 
O B l O M  

I M  I V  A R R A Y  I T V  P2RAY 
BLADE 

SURFACE 1 2 3 4 
NO. 

1 1 
2 21 
3 4 1  
4 6 1  
5 8 1  

0 1 9  0000 0000 
0 1 9  0000 0000 
n 1 9  0000 0000 
0 1 9  0000 0000 
0 1 9  0000 0000 



TABLE III. - Continued. SAMPLE OUTPUT 

r M COOROIVATFS 3F IYTFRSECTIONS OF HORIZONTAL MESH LI N E S  N I T H  DLAOE 

MH A K R A Y  - BLADE S U R F A C E  1 

V H  K MH BEH BETAH OTDMH 
0 0.3238 0.1000E-01 90.000 0.1000E 11 
0.9225E-03 0.3238 O.1OOOE-01 47.526 3.3728 
0.2233E-02 0.3238 0.1000E-01 43.797 2.9608 
0.3713E-02 0.3238 0.1000E-01 40.472 2.6347 

0.3238 0.IOOOE-01 36.494 2.2844 

TdETA COOROIYATES OF dORIZ3UTAL MESH LINES 

IT THETA 
-14 -0.57871E-01 
-13 -0.53738E-01 
-12 -0.49604E-01 
-L1 -0.45470E-01 

c -10  -0.41337E-01 

IT 
I =  

IP 
1 

IP1 IPZ IPJ 
IT1 = 0 

I P4 A I 1 1  AI21 AI31 A ( 4 )  K 

0 1 20 2 0 21 0. 0. 0. 1.00000 0.05329 
I 2 1 3 1 22 0. 0. 0. 1.00000 0.05329 
2 3 2 4 2 23 0. 0. 0. 1.00000 0.05329 
3 4 3 5 3 24 0. 0. 0. 1.00000 0.05329 
4 5 4 6 4 25 0. 0. 0. 1.00000 0.05329 
5 6 5 7 5 26 0. 0. 0. 1.00000 0.05329 
6 7 6 8 6 27 0. 0. 0. 1.00000 0.05329 
7 8 7 9 1 28 0. 0. 0. 1.00000 0.05329 
8 7 8 10 8 29 0. 0. 0. 1.00000 0.05329 
9 10 9 1 1  9 30 0. 0. 0. 1.00000 0.05329 

LO 1 1  10 12 10 31 0. 0. 0. 1.00000 0.05329 
11  12 1 1  13 1 1  32 0. 0. 0. 1.00000 0.05329 
12 13 12 14 12 33 0. 0. 0. 1.00000 0.05329 
13 14 13 15 13 34 0. 0. 0. 1.00000 0.05329 
14 1 5  14 16 14 35 0. 0. 0. 1.00000 0.05329 

7 15 
16 

16 
1 7  

15 17 15 
16 18 16 

36 
37 

0. 
0. 

0. 
0. 

0. 
0. 

1.00000 
1.00000 

0.05329 
0.05329 

17 18 17 19 17 38 0. 0. 0. 1.00000 0.05329 
18 19 18 20 18 39 0. 0. 0. 1.00000 0.05329 
19 20 19 1 1') 40 0. 0. 0. 1.00000 0.05 329 

H =  2 I T 1  = 0 
0 21 40 22 1 41 0.23972 0.23972 0.26028 0.26028 -0.23972 
1 22 21 23 2 42 0.23972 0.23972 0.26028 0.26028 -0. 
2 23 22 24 3 43 0.23972 0.23972 0.26028 0.26028 -0. 
3 24 23 25 4 44 0.23972 0.239 72 0.26028 0.26028 -0. 
4 25 24 26 5 45 0.23972 0.23972 0.26028 0.26028 -0. 
5 26 25 27 6 46 0.23972 0.23Y72 0.26028 0.2602 8 -0. 
6 21 26 2a 7 47 0.23972 0.23972 0.26028 0.2602 8 -0. 
7 20 27 29 8 48 0.23972 0.23972 0.26028 0.2 6028 -0. 
8 23 2a 30 9 49 0.23972 0.23972 0.26028 0.26028 -0. 
9 30 29 31 10 50 0.23972 0.23912 0.26028 0.26028 -0. 

LO 31 30 32 1 1  51 0.23972 0.239 I2 0.26028 0.2 6028 -0. 
11 32 31 33 12 52 0.23972 0.23972 0.26028 0.26028 -0.-~ 
12 33 32 34 13 53 0.23972 0.23972 0.26028 0.26028 -0. 



ESTIMATED OPTIWJM ORF = 2.000000 
ESTIMATED OPTIMUM ORF = 1.999756 
ESTIMATED OPTIMUM OKF = 1.999655 
ESTIMATED OPTIMUM ORF = 1.999614 
ESTIMATE0 OPTIMUM ORF = 1.999614 

E R R O R  = 1.85355929 
E R R J R  = 1.85807033 
ERROR = 1.56815425 
E R R J K  = 1.46978973 
ERRJR = 1.28075877 

S T R E n M  FUNCTIOY VALUES 
I M  = 1 I T 1  = 0 

0.55114593 0.59970274 0.64908738 0.69933973 0.75039311 0.80210201 0.85427140 0.90668324 0.95911737 1.01136483 
1.06323957 1.11458504 1.16528240 1.21525803 1.26448990 1.31301716 1.36094677 1.40845889 1.45579982 1.50126271 

2 I T 1  = 010< I M  = 
0.49785382 0.54641053 0.59579523 0.64604745 0.69710085 0.74880970 0.80097911 0.85339101 0.90582513 0.95807273 
1-00994742 1.06129277 1.11199026 1.16196582 1.21119776 1.25972487 1.30765460 1.35516658 1.40250759 1.44997048 

I M  = 3 I T 1  = 0 
0-44394214 0.49235569 0.54170386 0.59201737 0.64320508 0.69509356 0.74746353 0.80007856 0.85270490 0.90512421 

r 


~ 0.95716255 1.0085977’ 1.05936310 1.10935885 1.15855476 1.20698299 1.25474706 1.30203211 1.34910329 1.39629060 

11 T I M E  = 2.6014 MIN. 

r STREAMLINE COOROINATES 

M C O O R ~ I V ~ T E  S T R E A M  FN. T H E T A  

-0.1156263E-01 0.6000000 0.4158784E-02 
12 1.2000000 

0.6000000 
0.5246917E-01 
0.4150784E-02 

-0.1027789E-01 0.6000000 0.8615924E-02 
I .2000000 0.5692582E-01 
0.6000000 0.8615924�-02 

-0.8993i5t1~-02 0.600oooo 0.1305006E-01 
1. z000000 0.6140528E-01 
0.6000000 0.1305006E-01

L 

STREAM FN. THETA STREAM FNL THETA 

0.0000000 0.2050116E-01 1-0000000 0.3830188E-01 
1.4000000 0.6953478E-01 0.6400063 0.7512779E-02 
0.6000000 0.4158784E-02 
0.8000000 0.2472470E-0 I 1~0000000 0.4054115E-01 
1.4000000 0.7418718E-01 0.6400063 0.1190771E-01 
0.6000000 0.8615924E-02 
0.8000000 0.2892955E-01 1-0000000 0.4477611E-01 
1.4000000 0.7886315E-01 0.6400063 0.1627820E-01 
0.6000000 0.1305006E-01 



TABLE III. - Continued. SAMPLE OUTPUT 

* *  * * * * 
* *  * * * * 

** * * * * 
* ** * * * 

* ** * * * * ** * * * 
* ** * * * * * **  * * 

* * ** * * 
* * * * *  * * 

* * * **  * * 
* * * ** * * 
* * * ** * * 

* * * * *  * * 
* * * * *  * * 

* * * * *  * * * * * * *  * * 
* * * * *  * * 
* * * * *  * * 

* 

* * * ** * * * * * * *  * * 
* * * ** * * 
* * * * *  * * * * * * *  * * 

I * * * * *  * * 
0.0200 1 

1 
1 
1 
1 

* * 

* 
* * 
* 

* 
* * 

* 

** 
* *  * *  
* 

* * 
* * * 

* * * * 



1 

0.0300 1 


1 

1 

1 

1 

1 

1 

1 

1 

1 


0.0400 	 1 

1 

1 

1 

1 

1 

1 

I * 

1 *  

124 1 
0.05001* 

1 * 

1 * 

1 

1 

1 

1 * 

1 * 
1 

1 


0.06001 

1 * 

1 

1 

1 


* * * * *  * * * 
* * * * *  * * * * * Ir * *  * *  * 

* *  * * * * *  * * * * * * *  
* * * * * * *  

* * * * * * *  
* * * * * * *  * * * * * ** 

* * * * * * *  
* * * * * * *  

* * b * * * *  * * * * * * *  
* * * * * * *  

* * * * ** 
* * * * * * *  

* * * * * * *  * * * * ** * * * * * *  
* * * * * *  

* * * * *  
* * * ** * b * ** 

* * ** * * * ** * 
* ** * * * ** * * 

* * ** * * 
* ** * * 

W 
cn 




W TABLE IIl.- Concluded. SAMPLE OUTPUT 
Q, 

V E L O C I T I E S  AT I N T E R I O R  MESH P O I N T S  

I M =  1 VELOCITY A V G L E ( 0 E G I  V E L O C I T Y  A N G L E ( 0 E G I  V E L O C I T Y  A N G L E ( 0 E G )  V E L O C I T Y  A N G L E ( 0 E G I  V E L O C I T Y  A N G L E I O E G )  
157.34 4R. 89 158.48 48.46 160.10 47.94 161.75 4 7 - 4 1  163.28 47.09 
164.52 46.81 165.38 46.66 165.80 46.62 165.79 46.71 165.37 46.90 
164.59 47.18 163.52 47.53 162.25 47.93 160.87 48.36 159.47 48.78 
158.18 49.15 1 5 7 . 1 1  49.42 156.39 49.56 156.10 49.53 156.45 49.29 

I Y =  2 V F L O C I T Y  A Y G L E O E G )  V E L O C I T Y  A N G L E ( 0 E G I  V E L O C I T Y  A N G L E I O E G )  V E L O C I T Y  A N G L 6 ( O E G l  V E L O C I T Y  A N G L E I O E G I  
158.45 49-16 15Y.84 48.80 161.54 48.29 163.08 47.80 164.37 47.35 
165.29 47.30 165.79 46.76 165.84 46.63 L65.48 46.63 164.74 46.75 
163.717 46.96 162.44 47.27 lh1 .05  47.64 159.63 48.06 158.31 48.49 
157.20 48.91 156.43 49.25 156.11 49.49 156.31 49.58 157.15 49.46 

14 I r E R A T I O N  VO. 1 MAXIMUM R E L I T I V E  CHANGE 1 Y  D E N S I T Y  = 0.5774 

4 SURFACE V E L X I T I E S  B A S E 0  ON H E R I O I O N A L  COMPONENTS * 
c 4 * * B L A D E  SURFACE 1 4 B L A D E  SURFACE 2 * 

rl * V E L O C I T Y  A N G L E ( 0 E G I  SURF. L E N G T H  WlWCR 4 V E L O C I T Y  A N G L E t O E G J  SURF. L E N G T H  WlWCR * 
0 * o 90.00 0 0 * D -90.00 0 0 * 
0-1285E-02 * 297.83 46.40 0.2152E-02 0.9588 * 62.663 24.98 0.1417E-02 0.2017 * 
0.2569E-02 * 255.80 43.02 0.3958E-02 0.8234 4 85.707 24 -82  0-2833E-02 0.2759 * 
0-3854E-02 4 248.70 40.15 0.5676E-02 0.8006 * 96.491 24.66 0.4248E-02 0.3106 * 
0-5139E-02 * 245.70 31.11 n.7321~-02 0.7909 * 100.27 24-48 0.5660E-02 0.3228 * 

SURFACE V E L O C I T I E S  B A S E 0  ON T A N G E N T I A L  CflMPONENTS 

B L A D E  S U R F A C t  1 
M V E L O C I T Y  A V G L E ( 0 E G )  W l W C R  

0 261.28 90.00 O. f l411  
0-9225E-03 310.64 47.53 1.0000 
0-Z233E-02 265.58 43.80 O.fl549 
0.3713E-02 251.53 40.47 0.8097 



r 

16 T I M E  = 2.9211 MIN.  



ERROR CONDITIONS 

The e r ro r  conditions are as follows: 
(1) SPLINT USED FOR EXTRAPOLATION 

EXTRAPOLATED VALUE = X.XXX 
SPLINT is normally used for  interpolation, but may be used for extrapolation in some 
cases. When this occurs, the above message is printed, as well  as the input and output 
of SPLINT. Calculations proceed normally after this printout. 

(2) BLCD CALL NO. XX 
M-COORDINATE IS NOT WITHIN BLADE 

This message is printed by subroutine BLCD if the M-coordinate given this subroutine as 
input is not within the bounds of the blade surface for which BLCD is called. The value 
of m and the blade-surface number are also printed when this happens. This condition 
may be caused by an e r ro r  in the integer input items for the program. 

The location of the e r ro r  in the main program is given by means of BLCD CALL NO. 
XX, which corresponds to locations noted by comment cards at each MHORIZ, ROOT, 
and BLCD call in the program. 

(3) ROOT CALL NO. XX 
ROOT HAS FAILED TO CONVERGE IN 1000 ITERATIONS 

This message is printed by subroutine ROOT if a root cannot be located. The input to 
ROOT is also printed. The user should thoroughly check the input to the main program. 

The location of the e r ro r  in the main program is given by means of ROOT CALL NO. 
XX, which corresponds to locations noted by comment cards at each MHORIZ and ROOT 
call in the program. 

(4) DENSTY CALL NO. XX 
N E R ( ~ )= xx 
RHOW IS X.XXXX TIMES THE MAXIMUM VALUE FOR RHOW 

This message is printed if the value of pW at some mesh point is so large that there is 
no solution for the values of p and W. This indicates a locally supersonic condition, 
which can be eliminated by decreasing WTFL in the input. 

If R H O V  is too large, TANDEM still attempts to calculate a solution. This often 
permits an approximate solution to be obtained which is valid at all the subsonic points in 
the region. In other cases, the value of W is reduced at some of the points in question 
during later iterations, resulting in a valid final solution for these points. The program 
counts the number of times supersonic flow has been located at any point during a given 
run (NER(1)). When NER(1) = 50, the program is stopped. 

The location of the e r ro r  in the main program is given by means of DENSTY CALL 
NO. XX, which corresponds to locations noted by comment cards at each DENSTY call 
in the program. 

38 



(5) MM, NBBI, NRSP, OR SOME SPLNO IS TOO LARGE 
If this is printed, reduce the appropriate inputs to their allotted maximum values. 

(6) WTFL IS TOO LARGE AT BLADE LEADING EDGE 
This is printed if WTFL is greater than the choking mass flow for the boundary BM. If 
this message is printed, WTFL is cut in half by the program and calculations proceed as 
usual for one outer iteration. 

(7) ONE OF THE MH ARRAYS IS TOO LARGE 
This is printed if there are more than 100 intersections of horizontal mesh lines with any 
blade surface. In this case NBBI should be reduced. 

(8) THE NUMBER OF INTERIOR MESH POINTS EXCEEDS 2000 
This is printed if there a r e  more than the allowable number of finite-difference grid 
points. Either MM or NBBI must be reduced. 

(9) SEARCH CANNOT FIND M IN THE MH ARRAY 
If this is printed, the value of m and the blade-surface number are also printed. The 
user should thoroughly check the input to the main program. 

PROGRAM PROCEDURE 

The program is segmented into seven main parts, the subroutines INPUT, PRECAL, 
COEF, SOR, SLAX, TANG, and VELOCY called by the main program TANDEM. In ad
dition, there a r e  several other subroutines. All the subroutines and their relation a r e  
shown in figure 15. All information which must be transmitted between the seven main 
subroutines is placed in COMMON. 

Most of the subroutines in TANDEM use the same set of variables. These variables 
a re  all defined in the section Main Dictionary (p. 50). All subroutines using these vari
ables a re  described prior to the main dictionary. The remaining subroutines are de
scribed after the main dictionary, and variables a r e  defined with each subroutine. 

The program can handle as many as 2000 mesh points on the IBM 2-7094-7044 direct-
coupled system with a 32 768-word core. For  2000 mesh points to be handled an over
lay arrangement is used, as shown in figure 16. All subroutines not shown are in the 
main link. The total program storage requirement is 74513

(8) 
of which 46770(8) is in 

COMMON blocks which a r e  stored in the main link. The system storage requirement for 
our computer is 2764 

(8) 
and unused storage is 300

(8)’ 
If there is a storage problem on 

the user’s computer, the maximum number of mesh points should be reduced. The fol
lowing program changes a r e  required to change the maximum number of mesh points: 

(1) Change the dimension of A, U, K, and RHO in the COMMON/AUKRHO/statement. 
This statement occurs in most subroutines. 

(2) In subroutine INPUT, change the number of values of U, K, and RHO to be ini
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Figure 16. - Arrangement for overlay, showing octal storage requirements. 
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tialized (the bound on the DO loop near statement 60). 
(3) In subroutine PRECAL, change statement 340 and format statement 1150 to re

flect the maximum allowable number of mesh points. statement 340 wil l  cause the pro
gram to stop if there are too many mesh points. 

(4) Change the dimensions of W, RWM, and BETA in SLAX, SLAV, TANG, VELOCY, 
and VEL. 

(5) If the number of mesh points is reduced to below 1600, the equivalence statements 
in SLAX, SLAV, TANG, VELOCY, and VEL must be changed. 

The first segment of the program is INPUT. This subroutine reads all input data 
cards, calculates constants, and initializes arrays. The next subroutine is PRECAL, 
which calculates all quantities which remain constant for a single problem. INPUT and 
PRECAL are each called once for a given problem. The remaining subroutines are 
called once for each outer iteration. The subroutine COEF calculates the entries of the 
matrix A and the vector k of equation (A7). These coefficients must be recalculated-
for each outer iteration. On the first outer iteration subroutine SOR estimates an opti
mum overrelaxation parameter i2 on the first call if it is not given as input. The same 
value of i2 is used for each outer iteration. SOR then finds the linear solution to equa
tion (A7) with fixed coefficients by successive overrelaxation. Then subroutine SLAX 
calculates the streamline locations and pWm and plots the streamline locations if de
sired. Subroutine TANG calculates pWe and then pW and p throughout the region. 
Finally, the subroutine VELOCY calculates the density p and velocity W throughout 
the region and on the blade surfaces and plots the surface velocities. 

Conventions Used in Program 

For convenience, a number of conventions a re  used in naming variables and assigning 
subscripts. First, several pairs  of variables a re  spelled the same except for one letter, 
which is U in one case and L in the other. The U signifies an upper surface BC, DF, EF, 
or JK, and L signifies a lower surface ML or JI. Another practice is to use the letters 
I and 0 in a similar manner, where I re fe rs  to the inlet or  region ABMN, and 0 refers 
to the outlet o r  region FGHI. Similarly, the letter T refers to 8 ,  and M refers  to m. 
Finally, V is used to refer to vertical mesh lines, and H re fers  to horizontal mesh lines. 
For  example, DTDMH is an a r ray  of the values of de/dm at the intersections of hori
zontal mesh lines with the blade. 

The variable IP is used to number all the mesh points. It starts with IP = 1 at A 
and is incremented up the vertical mesh lines one by one to the right, ending with 
IP = NIP at the last mesh point near H. The mesh spacing in the m-direction is labeled 
HM1, HM2, or  HM3, and the spacing in the 8-direction is HT. The subscript IM de
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notes the number of a vertical line, from IM = 1 at AN to IM = MM at GH. IT denotes 
the number of a horizontal mesh line. IT is zero along AB, increases to ITMAX at the 
highest mesh line in the region and decreases to ITMIN for the lowest mesh line in the 
region. 

Labeled COMMON Blocks 

For convenience, most variables which are used in more than one subroutine are 
placed in labeled COMMON blocks. A brief description of each labeled block is given. 
The same variable names are used in different subroutines for every variable in a 
COMMON block. The only exception is when EQUIVALENCE is used for variables in 
/AUKRHO/. The labeled COMMON blocks a r e  as follows: 

/INP/ is used for  input variables, with the exception of those in /GEOMIN/. 
iGEOMIN/ is used for certain geometry input variables which are needed only in 

PLCD. 
/CALCON/ is used for calculated constants which a r e  initially calculated in INPUT 

or  PRECAL and do not change after this. 
/AUKRHO/ is used for the a r rays  A, U, K, and RHO (see section Main Dictionary) 

o r  the variables which are made equivalent to some of these. 
/BLCDCM/ is used for internal variables for  BLCD. /BLCDCM/ is needed only to 

save certain values when overlay is used. 
/HRBAAK/ is used for variables calculated by HRB to be used in AAK. 
/RHOS/ is used to store values of p on blade surfaces. 
/SLA/ is used for  streamline 8-coordinates. 
/BOX/ is used for  internal variables for the spline subroutines in order to reduce 

storage requirements. 

Subroutine INPUT 

Reading and printing of input. - The program first reads all input cards for a partic
ular problem. A description of the input required is given in the section Instructions for 
Preparing Input. All the input data are printed as the first output. 

Calculation of constants and initialization. - After all input is read, many of the sim
pler constants used throughout the program a r e  calculated. Finally, all density arrays 
a r e  initialized to ph(RH0IP). 
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Subroutine PRECAL 

Calculation of constants. - The prerotation h and the average relative velocity Wle 
at the blade leading edge a re  calculated first by an iterative process (eqs. (B?) to (B9)). 
During this calculation the input weight flow (WTFL) is checked to see if it is larger than 
the upstream choked flow value. If so, it is cut in half and the computation of h and 

Wle is repeated. Maximum values of the mass flow par.ameter pW (eqs. (B10) to (B12)) 
and the critical velocity Wcr are then calculated at the leading and trailing edges of the 
blade row. The flow angles p, and pout are also computed at the upstream and down
stream boundaries (appendix B) from the values, ple and p,,, given at the leading and 
trailing edges. 

Calculation of________ . -vertical mesh~ line arrays.  - BLCD is called for the four blade sur
faces obtaining 0 -coordinates (TV) and slopes (DTDMV) where the vertical grid lines 
meet the blades. By using the TV array, the integer a r rays  (ITV and IV) are calculated. 
Finally, by using DTDMV, the blade-surface angles (BETAV) a re  calculated. 

Calculation of horizontal mesh line arrays.  - MHORIZ is called once for each of the 
four blade surfaces to obtain the m-coordinates (MH) and slopes (DTDMH) where horizon
tal grid lines meet the blade surfaces. Then by using cubic spline interpolation (SPLINT) 
and the MH array, RMH and BEH are calculated. Finally, the blade-surface angles 
BETAH a re  calculated by using DTDMH. 

Subroutine COEF 

Subroutine COEF controls the calculation of the finite-difference coefficients of -u 
in equations (A2) to (A6) (elements of the matrix A in eq. (A?)). At the same time, it 
computes the constants of the finite-difference equations (components of -k in eq. (A?)). 

Calculating.- coefficients and constants throughout region. - COEF progresses from 
left to right through the blades. COEFP and COEFBB are called along each vertical 
mesh line for  the calculation of the coefficients and constants. COEFP is called in the 
periodic regions upstream and downstream of the blades, and between front and rear 
blades for  the nonoverlapping case. COEFBB is called in the regions between upper and 
lower blade surfaces. 

Corrections to  coefficients and constants. - At certain points in the solution region,
. .  

corrections must be made to the coefficients and constants calculated by COEFP and 
COEFBB. This is done at the end of COEF if points B, J, C, E, o r  F (see fig. 4)on the 
blade surfaces coincide with mesh points in the solution region. Corrections are also 
made along line KL and the line to the right of CD. The periodic boundary condition equa
tions are applied herein (see eqs. (A5) and (A6) and the explanation following them). 
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Subroutine COEFBB 

Subroutine COEFBB computes the coefficients a.. and constants ki along a vertical 
13

mesh line from blade to blade. It has a second entry point (COEFP) with completely sep
arate code, which computes coefficients and constants in periodic regions. Both COEFP 
and COEFBB proceed up a vertical mesh line, one point at a time. 

In both the periodic and the blade-to-blade cases, HRB is called initially to compute 
the values of h, r, and b required in equation (A2). These values are then altered for 
special cases. In COEFBB they are altered along lines CD and KL, and in COEFP along 
periodic boundaries. COEFBB also calls BDRY12 and BDRY34 to obtain special values 
of h, r, and b when mesh points are within one mesh space of a blade boundary. Fi
nally, both COEFP and COEFBB call AAK to compute A and k from equations (A2). 

S ubroutine HR B 

Subroutine HRB calculates values of h, r, and b for  use in equations (A2). Each 
time it is called, it computes these values for  a single mesh point. 

Subroutine AAK 

Subroutine AAK is called by COEFBB and computes the coefficients a.. and the con
9 

stants ki of equation (A2)at a single point. 

Subroutine BDRY12 

Subroutine BDRY12 is called by COEFBB. It alters the values of h and r calcula
ted by HRB for point 1o r  2 (see fig. 17) if either of these points lies on a blade surface. 
It also defines the constants KAK and KA used to alter A and k in COEFBB o r  COEF. 

Subroutine BDRY34 

Subroutine BDRY34 is called by COEFBB. It a l ters  the values of h, r, and b cal
culated by HRB for  point 3 or  4 (see fig. 17) if either of these points lies on a blade sur
face. It also defines the constants KAK and KA used to alter A and k in COEFBB or 
COEF. 
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Subroutine SOR 

This subroutine solves the finite-difference matrix equation (A7) by the method of 
successive overrelaxation (ref. 10). The same section of code is used both for  calcula
ting the optimum overrelaxation factor 52 and to solve equation (A7). If a value of ORF 
greater than 1and less than 2 is given as input, it is used for  the overrelaxation factor. 
Otherwise a value is estimated by the program. 

In equation (A8), the subscript i denotes the index of an unknown mesh point. In the 
program, i is replaced by IP. The subscript j in equation (A8) denotes the index of 
neighboring unknown mesh points. For each i, there are only four values of j for which 
ai. is nonzero, which a r e  the negative values of the coefficients A(IP,l), A(IP, 2), 
A{P, 3), and A(IP, 4). The value of j is determined by the index of the proper neighbor
ing point. These indexes are named IP1, IP2, IP3, and IP4. These indexes a re  defined 

mso that uIPl has the coefficient A(IP, 1); the other indexes are defined similarly. 
Estimation of optimum overrelaxation factor. - If ORF = 0 as input, the optimum 

value for the overrelaxation factor S2 is estimated on the first outer iteration by using 
equations (B3) and (Bl) of reference 11. Equation (A8) is used to calculate um+l from-
um for equation (B3) of reference 11, with S2 = 1, and k = 0. Equation (A8) becomes-

i - 1  n 

. .  

j=  1 j=i+1 

To start, ui0 = 1 for  all i. The maximum value of the ratio uT"/uF is calculated for  
a given m and is given the name LMAX. After convergence, the optimum value of the 
overrelaxation factor S2 can be calculated by S2 = 2/(1 + d m ) .  This procedure 
is explained in appendix B of reference 11. 

Solution of matrix equation by subroutine SOR. - With a value of S2 either as input 
or  estimated by the program, equation (A8) can be used iteratively to calculate a se
quence {ym] that will converge to a solution to equation (A7). During each iteration, 
the maximum change of the stream function is calculated. When this maximum change is 
reduced below the iteration is stopped, and the current estimate of the stream 
function is accepted as the solution. 

Subroutine SLAX 

Subroutine SLAX, by calling subroutines SLAVP and SLAVBB (entry points of SLAV), 
computes the meridional mass  flow component pWm at all points on vertical mesh lines. 
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Subroutine SLAX also calculates and plots streamline locations. 
Calculating pWm throughout region. - Subroutine SLAX progresses from left to 

right through the blades, calling SLAVP and SLAVBB along each vertical mesh line. 
, SLAVP is called in the periodic regions upstream and downstream of the blade and be

tween blades for the nonoverlapping case. SLAVBB is called in the blade-to-blade 
regions. 

Plotting streamlines. - When subroutine SLAX reaches the right end of the region, 
all information is available from SLAVP and SLAVBB for  the streamline plot. The plot
ting printout is done by PLOTMY, which, with the necessary further subroutines PISTUG 
and KHAR, is described completely in reference 12. 

Subroutine SLAV 

Subroutine SLAV has two entry points, SLAW ana SLAVBB. SLAVP is called in 
'periodic regions, SLAVBB from blade to blade. Both entry points make use of a common 
section of code at the end of SLAV. 

Calculation of au/a0 and streamline locations. - SLAVP and SLAVBB compute 
&/a0 along each vertical mesh line. The derivative au/% is estimated at each mesh 
point from a cubic spline curve (SPLINE) of the stream function u. 

SLAVP and SLAVBB also calculate values of 0 corresponding to given values of the 
stream function. These values a re  printed out and are also used for the streamline plot. 
The stream function is a one-to-one function of distance in the 0-direction along most 
vertical mesh lines. Therefore, cubic spline interpolation (SPLINT) can be used to ob
tain 0 as a function of u. 

Calculation of pWm. - SLAVP and SLAVBB use the derivatives au/a0 to calculate 
pWm at each mesh point. The equation au/a0 = brpWm/w (eq. (3)) is used. Values of 
pWm are stored in RWM for interior mesh points, and in WMB where the blade surfaces 
are intersected by vertical mesh lines. 

Calculation of mass  flow Darameter DW on blade surfaces. - Where each vertical 
mesh line meets a blade surface, pW is calculated from pWm by the equation 

Subroutine TANG 

Subroutine TANG calculates the tangential mass  flow component pWe at all points 

46 



-- 

on horizontal mesh lines. This process is complicated by the fact that the horizontal 
mesh lines are shifted in crossing the boundary KL. 

Location of points on horizontal mesh lines. - Subroutine TANG begins at the bottom 
line of the region and proceeds upward to the top of the region, moving from left to right 
along each horizontal mesh line. On a given mesh line, the first point in the region is 
located by comparing IT for that mesh line with ITV for each of the four blade surfaces of 
successive points along the line. After an initial point in the region is located, TANG 
moves to the right along the line until it encounters the downstream boundary GH o r  a 
blade surface. Once again, TANG locates a blade boundary by comparing IT with ITV of 
the blade surfaces. ROOT is called to calculate mesh spacing at the end points when they 
a re  located on one of the blades. TANG stores the meridional distance and stream-
function value of each point located along a line into the a r rays  SPM and USP. 

Calculation of pWe. - When a horizontal mesh line exits from the solution region, 
subroutine SPLINE is called with SPM and USP to calculate &/am at each point along 
the line, The product pWe is then calculated from au/am by using au/am= -bpWe/w 
(eq. (2)). 

pW and flow angles at interior points. - At eachCalculation of mass  flow parameter - ~ -~- _ _  -- _ _  
interior point, pW is calculated by 

and the angle p is calculated by 

Pwet a n p = -
PWm 

These values are stored in W and BETA for all interior points. 
.~.of mass flow parameter pW on blade surfaces. - Where each horizontalCalculation~-~ -

mesh line meets a blade surface, pW is calculated from pWe by the equation 
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S ubroutine SEARCH 

Subroutine SEARCH is used by TANG in the calculation of the mass  flow parameter 
pW on blade surfaces. The distance (DIST) corresponds to some element in the MH ar
ray for a particular surface. SEARCH locates that element and returns its subscript to 
TANG. TANG then uses  a corresponding element in the BEH ar ray  in calculating pW. 

Subroutine VELOCY 

Subroutine VELOCY calculates densities p and velocities W from the mass  flow 
parameter pW at all points throughout the solution region and on the blade surfaces. It 
also plots the surface velocities. 

Solving for densities and velocities throughout region. - VELOCY progresses fromI_ 


left to right through the blades, calling VELP and VELBB for  each vertical mesh line. 
VELP is called in the periodic regions, and VELBB is called from blade to blade. When 
the right boundary of the solution region is reached, VELSUR is called once to compute 
the blade-surface velocities. 

Plotting of velocities. - After VELOCY calls VELSUR, all information is available 
for the plot of surface velocities. The velocities are plotted by using different symbols 
for front and rear blades, upper and lower surfaces, and velocities based on both merid
ional and tangential components. Velocities based on meridional components a re  plotted 
if 1 p I 5 60", and velocities based on tangential components are plotted if 1 p I 2 30'. 
Plotting is done by PLOTMY, which is described in reference 12. 

S ubroutine VEL 

Subroutine VEL has three independent entry points, VELP, VELBB, and VELSUR. 
VELP and VELBB compute velocities in the periodic and blade-to-blade regions, and 
VELSUR computes velocities on the blade surfaces. None of these entry points share 
common code in VEL. 

The maximum relative change in density p along a blade surface is calculated in 
VELBB and VELSUR and is called RELER. If RELER is less than 0.001, the outer iter
ation is considered to be converged, and the calculations are stopped on the following 
i teration. 

Calculation of p and W. - Both VELP and VELBB proceed from left to right through 
a region, and upward at each vertical mesh line from boundary to boundary. VELSUR 
proceeds along the four blade surfaces one at a time. VELP, VELBB, and VELSUR cal
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culate density and velocity from pW by calling the DENSTY subroutine at each mesh 
point and boundary point. Along the blade surfaces, VELBB and VELSUR also calculate 
the ratio W/W,,. 

Printing of velocities. - VELP and VELBB print interior velocities and flow angles 
as they are calculated. Surface velocities, blade-surface angles, a r c  lengths, and ratios 
of velocity to critical velocity are printed at the end of VELSUR. 

Subroutine BLCD 

Subroutine BLCD calculates the 0-coordinate and d0/dm of a blade surface for any 
given value of m. There are four entry points to BLCD corresponding to the four blade 
surf aces. 

The first time that BLCD is called for  a particular blade surface, the coordinates of 
the first and last spline points are calculated. These points a r e  tangent to the leading-
and trailing-edge radii, respectively. The parameters defining the spline curve are also 
calculated at this time. 

Each blade surface is defined by the leading- and trailing-edge radii and by a cubic 
spline curve, which is a piecewise cubic polynomial. The procedure is to scan the spline 
points to determine which interval the m-coordinate is in and then to calculate the 8
coordinate and derivative. 

The arguments for the entry points of BLCD are defined so as to be called by ROOT 
to determine the m-coordinate of an intersection of a horizontal mesh line with the blade. 
Most of the information needed by BLCD is in labeled COMMON blocks. These variables 
a re  found in the main dictionary. 

The input argument is 

M meridional streamline coordinate, m 

The output arguments are as follow: 

THETA 0-coordinate of blade surface at m 

DTDM d0/dm of blade surface at m 

INF used when d0/dm is infinite; INF is normally 0, but set equal to 1 if d8/dm 
is infinite 
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Function IPF 

A mesh point in the solution region can be numbered in one of two ways. The first is 
by coordinates of mesh line intersection, IM and IT. IM is the number of the vertical 
mesh line, beginning with 1at the upstream boundary AN. IT is the number of the hori
zontal mesh line, beginning with 0 at the leading edge of the upper surface of the front 
blade. The second numbering system is by point count, using IP. IP increases up each 
succeeding vertical mesh line from left to right through the solution region. IPF returns 
the value of IP corresponding to given coordinates, IM and IT. 

Main Dictionary 

The Main Dictionary applies to all the previously discussed subroutines. 

A array of coefficients of u (i.e., elements of a.. of matrix A in 
1J 


eq. (A7N 

A12, A34 a12, "34 in eq. (A21 

AA temporary variable in PRECAL and BLCD 

AAA array used for temporary storage 

AANDK see Input 

AATEMP temporary location for AANDK in SOR 

ADD logical variable in TANG, indicating need to add 1to stream func 
tion at a mesh point prior to spline fit of stream function along 
a horizontal mesh line 

ADDL logical variable in TANG, indicating entrance into region where 
ADD applies 

ANS result of calls on ROOT in TANG and DENSTY in VEL 

AFt see Input 

AZ a. in eq. (A2) 

B array containing stream-channel thickness b at the four points 
adjacent to a point for which AAK is called 

B12, B34 b12, b34 in eq. (A21 

BB temporary variable in PRECAL and BLCD 
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BE 


BEH 


BESP 


BETA 


BETAH (BETAV) 


BETA1 (BETAO) 


BET1 (BETO) 


BLDAT 


BTAIN 


BTAOUT 


BV 


BZ 


CDMBIT (CDMBOT) 


CHANGE 


CHORD 


CMM 


C P  


CPTIP 


DBDM 


DELTV 


DIST 


ar ray  of values of b at vertical mesh lines 

array of values of b where horizontal mesh lines meet the four 
blade surfaces 

see Input 

a r ray  of values of @ at interior mesh points 

a r ray  of values of /3 where horizontal (vertical) mesh lines meet 
the four blade surfaces 

see Input 

a r ray  of angles at tangent points of leading- (trailing-) edge radii 
with the four blade surfaces (see input BETI1,2,3,4 and 
BETO1,2,3,4) 

see Input 

free-stream angle pin at upstream boundary AN based upon pie, 
calculated by eq. (B14) 

free-stream angle pout at downstream boundary GH based upon 

Pte, calculated by eq. (B14) 

a r ray  of stream-function boundary values on the four blade sur 
faces 

stream-channel thickness bo at a point for which AAK is called 

temporary grid locations along meridional axis in INPUT 

change in value of stream function at a particular point during an 
iteration of SOR 

ar ray  containing the meridional chord distances of each of the 
four blade surfaces (see input CHORDF and CHORDR) 

temporary variable in BLCD 

specific heat at constant pressure, c
P 

2c T'
P i n  

ar ray  of slopes at vertical mesh lines of spline curve for stream-
channel thickness 

increment in e-coordinate in VEL 

meridional distance in SEARCH from a blade leading edge to 
where a horizontal mesh line meets a blade surface 
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DMLR 


DTDM 


DTDMH (DTDMV) 


DTLR 


DUDM 


DUDT 


EM 


EMK, EMKMl 


ERROR 


ERSOR 


EXPON 


FIRST 


GAM 


H 


HM 1 

HM2 

HM3 

HT 

I 

11, I2 

tolerance for mesh points near a boundary in m-direction (If a 
mesh point is closer than DMLR to a boundary, the point is 
considered to be on the boundary. ) 

d0/dm along a blade surface in BLCD 

ar ray  of dO/dm where horizontal (vertical) mesh lines meet the 
four blade surfaces 

tolerance in f3-direction (see DMLR) 

ar ray  of derivatives of stream function du/dm along horizontal 
mesh lines in meridional direction 

a r ray  of derivatives of stream function du/d@ along vertical mesh 
lines in @-direction 

array of second derivatives of spline curves for each blade sur
face, calculated by SPLN22 in BLCD 

temporary variables for EM in BLCD 

maximum absolute value of change in u at any point for an over-
relaxation (SOR)iteration 

see Input 

M Y  - 1) 

initial value of some index 

see Input 

array containing mesh spacing h between the point for which 
AAK is called and the four points adjacent to it 

mesh spacing in m-direction from upstream boundary through 
front blade 

mesh spacing in m-direction for  overlapping portion of front and 
rear blades, or between blades for  the nonoverlapping case 

mesh spacing in m-direction through rear blade to downstream 
boundary 

mesh spacing in 8-direction from blade to blade 

temporary integer variable in PRECAL, SLAX, SLAV, and 
SEARCH 

temporary integers in SLAV 
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IEND 

M 


M S  


IM 


IM1 (IMT) 


lM2 

IMS 

IMSL 

IMSS 

IMTM1 

INF 

INIT 

INTU 

INTVL 

IP 


IP1, IP2, IP3, IP4 

IPCD, IPKL 

IPL (IPU) 

IPLMl (IPUP1) 

IS 

integer variable set equal to 1when final convergence to a solution 
is reached in the outer iterations on a given set  of data 

a r ray  containing current number of intersections of horizontal 
mesh lines with each of the four blade surfaces as intersections 
are located 

integer variable in BDRY34 and TANG for  counting intersections 
of horizontal mesh lines with blade surfaces 

index of mesh line in meridional direction (m-direction) 

integer variable in TANG indicating the vertical mesh line index 
of the first (final)point in the region of a horizontal mesh line 

I M 1 + 1  

array containing total number of intersections of horizontal mesh 
lines with each of the four blade surfaces 

temporary variable in PRECAL 

temporary variable in PRECAL, VELOCY, and VEL 

IMT - 1 

variable in PRECAL indicating when an infinite slope is located at 
a blade leading- o r  trailing-edge in a call on BLCD 

array used to indicate whether BLCD has been called previously 
on a given blade surface 

temporary integer streamline value in SLAV 

see Input 

index of Besh  point 

value of IP at the four adjacent points to the mesh point under 
consideration 

temporary IP along lines CD and KL in COEF 

value of IP where a vertical mesh line meets a lower (upper) sur
face o r  boundary 

value of IP on a vertical mesh line adjacent to a lower (upper) 
surface in VEL 

integer variable in SEARCH for indicating where a horizontal mesh 
line intersects a blade surface 
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IT index of mesh line in 8-direction 

IT3, IT4 value of IT for the adjacent points (3 and 4) to mesh point under 
consideration 

ITER outer iteration counter 

IT1 horizontal mesh line index in TANG one period below IT, IT-NBBI 

ITMAX (ITMIN) maximum (minimum) value of IT in mesh region 

IT0 value of IT at origin of coordinates at leading edge of front blade 

ITV array of horizontal mesh line indexes (IT) corresponding to inter
sections of vertical mesh lines with blade surfaces (ITV(IM, 
SURF) is the IT value for the mesh point in the region on verti
cal mesh line IM which is closest to blade surface (SURF).) 

ITV1, ITV2 temporary storage of ITV in TANG 

ITVIM 1 temporary ITV in TANG 

ITVL (ITVU) ITV of the lower (upper) blade surface on a given vertical mesh 
line 

ITVLP 1 ITVL + 1 

ITVMl (ITVP1) ITV of a blade surface in COEFBB for the vertical mesh line to 
left (right) of line under consideration 

ITVUM1 ITVU - 1 

IV array containing value of IP at the base of each vertical mesh line 

IVMM temporary storage of IV in COEF 

J temporary integer variable in INRUT, SLAX, and SLAV 

K array of constants; vector -k in eq. (A7) 

KA integer array indicating which of the four points surrounding a 
mesh point lie on a boundary 

KAK real  array giving the stream-function values of boundary points 
surrounding a mesh point 

KK integer counter in BLCD 

KKK array containing information used in plotting subroutine PLOTMY 

L temporary integer variable in SLAV 

LAMBDA x 
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LAST 


L E R  


LMAX 


LOC 


LOWER 

M 


MBI 


MBI2 


M B E M 1  


MBI2P1 


MBIMl 


M B I P l  


MBIT, MBOT 


MBO 

MB02 


MB02M1 


M B 0 2 P 1  


MBOM 1 


MBOP 1 


MH 


MLE 

MM 


MMLE 


MMMl 


MMMSP 


MR 


final value of some index 

array indicating location of e r r o r  messages printed by program 

maximum value of u ~ ' / u ~for eq. (B2) of ref. 11 

integer variable in SLAV specifying which entry point (SLAVP or  
SLAVBB) was used 

integer variable representing one of the lower blade surfaces, 

2 o r  4 


meridional coordinate, m 

see Input 

see Input 

M B E  - 1 

MB12 + 1 

MBI - 1 

M B I +  1 


temporary grid locations along meridional axis 


see Input 


see Input 


MB02 - 1 

MB02 + 1 

MBO - 1 

M B O +  1 

ar ray  of m-coordinates of intersections of horizontal mesh lines 
with the four blade surfaces 

a r ray  of m-coordinates of leading edges of the four blade surfaces 
(see input MLER) 

see Input 

temporary meridional distance in BLCD 

MM - 1 

temporary meridional distance in BLCD 

see Input 
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I I I IIll1 l11ll1l1l1l1~111l111l11l1111 

MRTS 


MSL 


MSP 


MSPMM 


MV 


MVIM1 


NBBI 


NBL 


NER 


NI 


NIP 


NP1, NP2 


NRSP 


NSP 


NSPI 


NSPMl 


OMEGA 


ORF 


ORFOPT 


ORFTEM 


P 


PITCH 


R 


integer switch in PREXAL indicating when infinite derivatives 
would be encountered in a call on MHORIZ 

temporary storage for  MV ar ray  during plotting in SLAX 

ar ray  of m-coordinates of spline points for  each blade surface 
measured from its leading edge (see input MSP1,2,3,4) 

temporary meridional distance in BLCD 

ar ray  of m-coordinates of vertical mesh lines 

temporary value of MV in TANG 

see Input 

number of blades 

array indicating number of t imes certain e r ro r  messages are 
printed by program 

number of streamlines blade to blade in SLAV 

number of interior mesh points 

integer counters in VELOCY indicating number of plotted blade-
surface velocities 

see Input 

number of spline points 

a r ray  containing number of spline points on each of the four blade 
surfaces (see input SPLNO1,2,3,4) 

NSP - 1 

see Input 

see Input 

upper bound for  estimate of optimum 51 from eqs. (Bl) and (B2) 
of ref. 11 

temporary storage for  ORFOPT 

array containing information used in the plotting subroutine 
PLOTMY 

2n/NEiL, 8-coordinate from blade to blade 

a r ray  of densities p at the four points adjacent to a point for 
which AAK is called 
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RATIO 


RELER 

RHO 

RHO1 

RHOB 

RHOHB 

RHOIP 

RHOMBI 

RHOMB2 

RHOMM 

RHOT 

RHOVB 

RHOVI 

RHOVO 

RHOWMI 

RHOWMO 

RI (RO) 

RM 

RMDTL2 (RMDTU2) 

RMH 

RMI (RMO) 

RMM 

value of u F ' / u r  for  use in eqs. (B2) and (B3) of ref. 11 

maximum relative change in density at surface mesh points, be
tween two outer iterations 

array of densities p at interior mesh points 

average density p at upstream boundary AN 

temporary storage in VEL for a value of p on a blade surface 

a r ray  of densities p at horizontal mesh line intersections with 
the four blade surfaces 

see Input 

average density p at leading edge of front blade 

average density p at trailing edge of r ea r  blade 

average density p at downstream boundary GH 

temporary value of density p 

array of densities p at vertical mesh line intersections with the 
four blade surfaces 

average value of pW at front-blade leading edge o r  upstream 
boundary AN 

average value of pW at rear-blade trailing edge o r  downstream 
boundary GH 

maximum value of pW at leading edge of front blade 

maximum value of pW at trailing edge of rear  blade 

array of leading- (trailing-) edge radii on the four blade surfaces 
(see input RI1,2,3,4 and RO1,2,3,4) 

a r ray  of r-coordinates of the mean stream surface radii at verti
cal  mesh lines 

(r dB/dm)2 at vertical mesh line intersections on lower (upper) 
blade surfaces 

a r ray  of r-coordinates of the mean stream surface radii where 
horizontal mesh lines meet the four blade surfaces 

array of r-coordinates of mean stream surface radii  at the inlet 
(outlet) of the four blade surfaces 

temporary meridional distance in BLCD 
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RMSP 

RWM 

RWT 

RZ 


S 


S1 (ST) 

SAL 

SIGN 

SLCRD 

SPLNO 

SPM 

SRW 

STGR 

STRFN 

see Input 

array of pWm where vertical mesh lines intersect the four blade 
surfaces 

a r ray  of pWe where horizontal mesh lines intersect the four 
blade surfaces 

density po at point for which AAK is called 

meridional distance between two adjacent blade-surface spline 
points in BLCD 

blade-surface number at beginning (end) of a horizontal mesh line 
in TANG 

ar ray  of values of sin a! = dr/dm at each vertical mesh line 

integer constant in BLCD 

see Input 

number of input spline points on a blade surface 

array of m-coordinates along a horizontal mesh line in TANG 

integer code variable that wi l l  cause certain subroutines to write 
out useful data for debugging: 

If SRW = 13, SPLINE will write input and output data. 
If SRW = 16, SPLINT will write input and output data. 
If SRW = 18, SPLN22 wil l  write input and output data. 
If SRW = 21, ROOT wi l l  wr i te  input and successive estimates of 

the root to which it is converging. 

array of 8-coordinates of center of each trailing-edge radius with 
respect to the center of its leading-edge radius (see input STGRF 
and STGRR) 

see Input 

SURF, SURFBV integer variables referring to one of the four blade surfaces 

SURFL ar ray  of blade-surface lengths at vertical mesh line intersections 
for each of the four blade surfaces 

SURVL see Input 

T1, T2 elapsed time in clock pulses (1/60 sec) 
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TBI 


TBI1, TBIT 


TBO 


TBOM, TBOT 


TGROG 


TH 


THETA 


THK, THKMl 


THLE 


THSP 


TIME 


TINT 


TIP 


TPP 


TSL 


TSP 


TTIP 


TV 


TWL 


TWLMR 


Tww 


U 

UINT 

temporary TBI 

tan Pte 
temporary TBO 

2 YRAY + 1) 

8-coordinate from leading edge of front blade to a horizontal mesh 
line 

8-coordinate of a point along a blade surface in BLCD 

temporary variables in BLCD 

ar ray  of 8-coordinates from origin of front blade to leading edge 
of each blade surface (see input THLER) 

array of 8-coordinates of spline points for each blade surface 
measured from its leading edge (see input, THSP1,2,3,4) 

elapsed time in minutes 

a r ray  of 8-coordinates in SLAV where plotted streamlines c ross  
vertical mesh lines 

see Input 

T" 

array of 6 -coordinates of plotted streamlines 

array of 8-coordinates of points along a vertical mesh line in 
SLAV 

array of 8-coordinates where vertical mesh lines meet the four 
blade surfaces 

2wh 

%wh - ( w r )2 

2w/w 

ar ray  of stream-function values at each mesh point, o r  of the 
eigenvector associated with spectral radius p(L1), as estimated 
by the power method (ref. 11) 

ar ray  of values of stream function for which it is desired to obtain 
interpolated values of 8 -coordinate in SLAV 
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UNEW 

UPPER, UPPRBV 

USP 

VI (vo) 

W 

WCR 


WCRI (WCRO) 


WMB 


WTB 


WTFL 


WTFLSP 


WWCRM 


WWCRT 


D O W N  


YACROS 


new value of stream-function estimate at a single point, calculated 
by eq. (6) 

integer variables representing one of the upper blade surfaces, 
1 or  3 

ar ray  of values of stream function along a vertical o r  horizontal 
mesh line, including boundary points 

average relative velocity at the leading (trailing) edge of the front 
(rear)blade 

a r ray  of relative velocities W at unknown mesh points, also used 
for storing pW 

critical velocity on a blade surface 

critical velocity at leading (trailing) edge of front (rear)blade 

ar ray  of pWm where vertical mesh lines intersect the four blade 
surfaces 

a r ray  of pWe where horizontal mesh lines intersect the four 
blade surfaces 

see Input 

see Input 

a r ray  of ratio of blade-surface velocity (based on meridional com
ponent) to critical velocity 

a r ray  of ratio of blade-surface velocity (based on tangential com
ponent) to critical velocity 

a r ray  of m-coordinates where surface velocities are plotted 

a r ray  of surface velocities to be plotted 
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Program Listing for Subroutines Using Main Dictionary 
COMMUN bRW1 I T � R t I t N J t L f K ( 2 )  t N E R ( 2 )  

COMMJN / A U K X H 3 /  A ( 2 0 O O t 4 )  ~ U ( Z O O U ) t K l 2 0 0 0 )t K H O ( 2 3 3 3 )  

CUMMON / I N P /  Z I A H t A d  , T I P  ,RHUI  P t  WTFL WWTFLSP, UMEGAt  O R F ,  B E T A I t  B E T A O t  


l M B 1  t M BO, M t l 1 2  t M B 0 2 ,  MM t N d B I  t Nt) L s NK SP t MR (50)  t RMS P (53) t BES P (  5 3  J t 
2 B L O A T  t AAV Ukr E R S J K t  S T R F N t  S L C R D  t 1 N T V L t  S U R V L  

CJMMJN / C A L C U N  / M3 IM 1,Ma I P 1  t Ma OM1 9 M O O P l t  M B I Z M l  ,M B I Z  P1 IMBUZMlt 
L M B U 2 P l t M Y M 1 ,  HY 1, H M 2 r H H 3 t d T  t D T L R  t O M L K  , P I T C H  p C P t  E X P O N t T d W  t CPT I P S  
Z T G K J G  T t i I  t TBO 9 L A M O J A  9 T r l L  t I TMI N t I TMAX t N I  P 9 1  MS L 4 1 t BV ( 4  1 t MV ( 103 I t 
3 1 V (  1 ~ 1 ) s1 T V (  100.4) t TVL 100.4) t D  TOMV ( l o o t 4  J t b E T A V  L110 r 4  1 v 

4MH( 1 0 0 ~ 4 ) ~ L J T U M H L 1 0 0 t 4 lt B c T A H ( 1 0 0 t 4 )  t R M H ( 1 3 0 t Q )  t B E H ( 1 3 3 t 4 I t  
5 K M l  1 U O J ~ ~ E ~ L O O l t ~ ~ U M ~ 1 0 O lt S A L ( L O 0 )  t A A A ( 1 3 0 )  

COMHJN / Z E U M I H /  i d J K I ( 4 )  p S T b K ( 4 l  VMLE 1 4 )  t T H L E L 4 )  t R M I  ( 4 1  t R M U L 4 ) r  
1 K I (  4),hJ( 4 ) , d E T I ( 4 ) t 3 E T U ( 4 1  t N S P I  (41 t M S P ( S O t 4 )  t T H S P ( 5 3 t 4 )  

CJMMUN / d H O S /  R H U H B t  100 t4)  t R H O V 8  (130t 4 l  
COMMJI\I / u L C U C M /  E M ( 5 0 t 4 l  t I N I T ( 4 I  
IY T EGER B L  UA T 9 A PNUK t E liSUR p STKF N t SLCRU t SUKV L t A A T  EMP t S J  R F  t S U R F  BJ t 

L F I K S T t  W p t K p  U P P K t l V t  S 1 s  S T t  SRW 
R E A L  K .MA& VLAMtlDA 9 L M P X t M d  t MLE M R  ,MSL t M S P t  M V t  M V I  M 1  
C A L L  T I M E  11 T 11 

10 	 I t N O  = -1 
I T E K  = 0 
DU LU S U K F = 1 . 4  

20 I i Y I T ( S U R F )  = 0 
C A L L  I i ’ JPJT 
C A L L  P d E L A L  

30 L A L L  COEF 
C A L L  SUK 
C A L L  T IHE. l(1 2 )  
T It4 t =  ( TL- T 1  ) / 3000. 
W K I T t (  6 ~ 1 0 0 1 J1 TIME 
C A L L  S L A X  
C A L L  T A N Z  
C A L L  V t L J C Y  
C A L L  T I M E 1 4 1 2 1  

T I M t =  ( T L - T 1 ) / 3 6 U O .  

WR I T t (  6 , l O W  I T I M t  

I F ( N t R ( 2 J . G T . O )  1;U T J  10 

16 I I E N D )  30r30t10 


1000 FURMAT ( 8 H L T I M E  = ,F17.4t5;1 HIN. 1 
ENU 

S U B K l l U T I N t  I N P U T  
C 
C I N P U T  K t A C S  A N U  P r t I N T S  4 L L  I N P U T  U A T A  CARDS A N 0  C A L C U L A T E S  H U R I Z O N T A L  
C S P A L I N C .  ( M V  A R X A Y I  
r
L 

CU‘iMJN SKW.1 TEK, I t N D  t L t K ( 2 )  t N E R ( 2 )  

CUYMJN / A U K X H J /  A ( L O U U I ~ )  t U ( 2 0 0 0 )  t K ( 2 0 2 1 3 )  t f W U ( 2 3 ’ J J I  

CUMMJN / I N P /  GAY 0 At t  9 T I P 1 R d U I  P t WTFL t WTF L S P  t U M t G A t  ORF t B t T A I  t B E T A 0 9  


1H6 I t  MBLl, ’4 tl 12 pMBUZ,MM, Nt)bI t NB L t NK SP t M K  ( 5 0  1 t RMSP (50)t BES P (  5 3  I t  

Z B L D A T t  AAN O K ,  E R  SUU t 5TAFNt S L L R D  t I N T V L t  S U R V L  


CUMMUIY / C A L L O N /  Mb 1 M  11MB 1P 1  t M t i U M 1  r M B O P 1  t M B I 2  M l  t M B I  2 P l  t M B U Z M l t  

l M B O  2P 1 t M M M  1, HM 1 r i M Z t t i M 3  t d T  t J  T L R  t U M L R  , P I  TCH t C  P t  t X P U N t  TdW t CPT I P t  

ZT b K J G  T B I  8 TB U t  L A M B J A  9 T d L  , I  T M I  N v I TMAX t N I  P 9 I MS ( 4I t BV ( 4 I t MV 1 103 I t 


3 1 V (  101) t  I T V (  100t 4)t TV ( 1 U O t 4 I  t i )  TUMV (100 t 4 )  t B E T A V [ 1 3 0  t 4 )  t 

4MH( 1 0 0 t 4 ) t O T O M H 1  1U0.4) r a E T A d ( 1 0 0 t 4 1  t K M t i ( 1 3 0 t 4 1  t B E H ( 1 3 3 t 4 ) t  

5KM1 1UO ) t 3 � L l W l  t U a U M (  100)r S A L ( 1 0 0 )  t A A A L l O U l  


COMHLlN / G E U Y I N /  C H J R 3 ( 4 1  t S T G K ( 4 l  tMLE ( 4 )  r T H L E ( 4 l  r R M I ( 4 l  t R M O ( 4 ) t  

AR I (  4J t KUL 41t O E T I  ( 4 )  t 3 E  T J  (41 t N S P I  (4 I 9 M S P ( 5 0  t 4 )  t T H S P  ( 5 3  t 4 )  


LUMHON /KHOS/ R H U H f i ( l O O t 4 1  t R H O V B ( 1 U O t r l  

I N T E b E K  BLU$ TI A A N D h t  E 4  S U K t  S T K F N  t SLCRL) t S U K V L t  A A T E M P  ,SURF 9.S U KFBJ t 


Af I R S T t  U P P E R t  U P P X B V ,  Sl t S T ,  SRW 

R E A L  K . K & K , L A M O D A t L M $ X t M H  t H L E  t MK t M S L  , M S P t M V t M V I M l  
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C 

C R E A D  A N D  P K I N T  A L L  I N P U  OA TA 

C 

YR IT�( 6 t ' l O U O  I 
K E A U  ( 5 , l l U O I  

WRITE(  6,1100) 

H R I T E ( % r  1110) 

R E A D  (511030) GAMvAK T I P  ,KnUI P ,WTFL ,k T F  LSP1OME6A,ORF 

d l ( I T E (  6,1 0 4 U  ) L A M p A K ,  T I P , R H U I P  r WTFL 9 W T F L S P I U M E G A ~ O R F  


C C A L C U L A T t  MV A d R A Y  
C 

20  	H M 1  = CHUROL l ) / F L O A T ( M M U - M B I  J 
I F (  M b U  .6T .AB I2.AiYD .Ab I .NE. Ma 12 1 H M 1  = M L t  ( 3 1  / F L U A T  ( M B I  2-MMI 1 
HM2 = 1 . E 3 0  
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C 

C C A L C U L A T k  M I S C t L L A N E U U S  C O N S T A N T S  
C 

N E R (  11-0 
N E K l 2  1-0 
P I T C H  = Z . * 3 . 1 4 1 5 9 2 7 / F L O A T ( N B L )  

HT= P I T C H / F L U A T ( N B 8 1 )  

U T L K =  H T /  1 t l O U .  

UMLK = AY I k l l  H M ~ ~ H N L I H M ~ ) 
/1000. 
BV( 11 = 0. 
8 V l Z )  = 1. 
8 V t  3 )  = - M T F L S P / W T F L  
B V ( 4 )  = l . + B V l 3 )  
M t ) I M l =  MdI-1 
M B I P l =  Mt)I+l 
M B O M l =  M t l U - 1  

M b i l P l =  M b d + l  

M B I 2 M 1 =  M B I 2 - 1  

M B I 2 P l =  M B 1 2 + 1  

M t l O i M l =  M B U l - 1  

M&UZP 1= M B U 2 + 1  

M M N l  = MM-1 

CP = A K / (  6 A M - 1 .  J*GAM 

EXPONS l . / ( G A M - l . )  

TWW= L.*UMEGA/WTFL 

C P T I P =  L . * C P * T I P  

T t i K U G =  2. *CAM*AR / ( (;AM+ 1. I 

C A L L  S P L  IN T(  MP. t KMSP t INk SP 9 MV t MM t R M t  S A L  I 

L A L L  S P L  I N T l  MA 9 8 E S P  t iVK SP t M V s M M t B E t D B U M I  


C 

C C A L C U L A T k  G t U M t T k I C A L  C U N S T A N T S  
C 

C H O K U l  iI = L M K D 1 1 )  
CHURU( 4) = L H J K D ( 3 )  
S T t i R t 2 )  = S i G R ( 1 1  
S T t i K ( 4 1  = S T G R 1 3 I  

M L E (  1 )  = 0. 

M L E ( L )  = 0. 

M L E ( 4 b  = M L f i ( 3 I  

THLE( 1 )  = 0. 

T H L t ( 2 )  = P l T C H  

T H L E ( 4 )  = P I T C H i T H L E ( 3 1  

R M l ( 1 )  = K M l M B I )  

R M I ( 2 )  = K M ( M l 3 I )  

K B l ( 3 )  = K M ( M B I 2 I  

K M 1 1 4 I  = K M l M B I 2 )  

KMU( 1J = K M ~M d U 1  
R M U ( 2 )  = R M i M B U )  
K M U ( 3 )  = R M ( M B U 2 I  
K M L i l 4 )  = K M ( H t ) U 2 I  

rI. 

C I N I T I A L I Z E  AKt(AYS 

C 


DO 60 I = L t L O ( i O  

U I  i1 = 1. 

K ( I )  = 0. 


60 	RHU( iI = &ti) I P  
00 70 1 M = 1 , 1 0 0  
DO 70 S U K F = l t 4  
KHdHt)( IMt S U K F I  = A H U I P  
KHLIVBL IMt S U R F )  = K H U l P  

7 0  1TV(  I M t S U R F I  = -10000 
K k T U K N  

1000 FORMAT ( 1 H l I  
1010 FUKMAT (1615) 
1020 FORMAT ( 1 X t  1CI 7)  
1030 FUKMAT (dF10.5) 
1040 FURMAT ( 1 X s M G 1 6 . 7 )  
1100 FOKMAT ( 8 0 H  

1 
A 110 FURMAT t 7 X  9 3Ht iAM 1 4 X p  L H A K  s 13X t 3H T i  P 912 X.5 H KHOI P r12 X 14HWT FL t 1 1 K  t 6Hd 

l T F L  SP t 1OX t 5HOMEGA t l Z X t  3HURF I 
1120 F J R M A T  ( 6 X t S H d E T A I  t l ( J & r 5 H B E T A U  r l 1 X  s6HCHORDF t l 1  X t S H S T G R F  t 1 3 X  t 
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-- 
-- -- -- 

1 6 H L H O K U K p  1 O X t  5HSTL;RK t 1 2 X t 4 H M L E H  r l l  X t 5 H  THLER)  
1130 F J R M A T  ( 4 1 H  HBI MBO M 3 1 2  MBU2 MM NtjBI N0L N R S P )  
1140 F b R M A T  (53HL B L A U t  S U R E A L t  1 U P P t K  S U K F A C E  - FKONT ' B L A D E )  
1 1 5 0  FOKIHAT ( 5 3 H L  t j L A U t  S U R F A C t  2 L O U E K  S U R F A C E  - FKUNT B L A D E )  
1160 FUki'IAT ( 5 2 H L  E L A D t  S U 2 F A i k  3 U P P t K  S U R F A C E  - R E A R  B L A D E )  
1170 FUKMAT (5LHL B L A D t  SUKFACE 4 L O H E K  SURI-ACE - K t A R  B L A D E )  
1180 FORMAT L 7 X t L H R I t I l t l Z X t Z r l R U t I l  t 1 2 X t 4 H B E T I  9 1 1  t l l X t 4 H B E T O t I l t l l ~ t 5 H j  

1 P L N O t  11) 
1190 FUKMAT ( 7 ~ y 3 H ~ S P t I l t 2 X t 5 r l A K R A Y )
1200 F D d M A T  ( 7 X  t 4 H T t i S P  t I 1t L X t  S i  ARRA Y) 
1210 FORMAT (16HL MK A R R A Y )  
1220 FURMAT ( 7 X t l l H K M S P  A R R A Y )  
1230 FORMAT ( 7 x 9 1  l H 6 E S P  A R R A Y )
1240 F U K M A T  (52HL t j L D A T  A A N D k  E K S O K  S T K F N  S L C R D  I N T V L  S J H J L I  
1250 FORMAT ( 4 1 H l  M P l t N B t 3 I t i U K S P t U R  SOME S P L A U  IS T O O  L A R G E )  

EN D 

S U B R U U T I N E  P K E C A L  
C 
L P R E C A L  C A L C U L A T k S  A L L  R E Q U I R E D  F I X E D  C U N S T A N T S  
C 

CUMMCIN SK W t  I T t K  9 I E N O  ,LER ( 2 )  t h E K ( 2 )  

C O Y N J N  / A U & I H i ) /  4 (LOOUt4l t U ( 2 0 0 0 )  tK(Z0OD) t K d O ( 2 3 D I )  

CdMMIIN / I N P /  GAMtAR t T I P , K H O I P  t WTFL t W T F L S P t d M E G A t  O R F t  a E T A I  t 8 E T A D t  


1 H B  I t M t l U t  Y B I2  ti9832 tMM t Nelti I r NB L t NR SP t MK (50)t KMS P f 5 0  1 t BES P (  5 5  I t 


20L OAT, BAN Uht E K S J K  t b T I F N t  S L L K U  t I N T V L t  S U K V L  

CUI'INI~N /LALCUl\r  / Mtj I M  1,MB I P 1t H B U M 1  t M B U P l  t M B I 2  M 1  t M 0 I  2 P 1  t M B O 2 M l t  


l M t j U  2P 1t'iM 141, HM 1t H M 2  t H M 3  t H T t D T L K  t UMLK t P I  T C H  t C P It X  PUN t r W W e CPT I Pt 

2TC;KJL;t  l B 1  t T B U p L A A b O A  t T d L t I  T V I I N t I  TMAX . N I P  11 HS ( 4  I t BV ( 4  I rMV (133)t 


3 I V i  101I t  1 T V i  1 O C t 4 )  t T V (  100 14)  t D  TDMV( l .00  t 4 1  t B E T A V  (1309 4 )  t 


4MH( l O O t 4 )  t O T U M H (  10014)t B t T A H  (10014) t K M H ( 1 3 0 t 4 )  t B E H ( 1 3 3 r 4 ) t  

5RM( 1 0 0 ) r t l E (  1 0 0 ) ~ ! J B t I M ( l ~ l 0 )t S A L ( 1 0 0 l  t A A A ( 1 D O I  
I1T E ti EK tjL UA T ,A AND K t & i3 SUK t S T KF N ISLCRD t SURV L t A A TEMP t 5JK F  t S J RF BJ v 

1F I K  S r t UP P EK t UPPR ti V t $1 t 5 T  y SK W 
R E A L  K t K A A y L A M B D A  t L M A X  tMH t MLE t MR t M S L  tNSPt M V t  MV I M1 
E X T E I I N A L  B L 1  r t i L 2 t d L 3 t j L 4  

C 

C C A L C U L A T E  LAMBIJA AND V I  

C 


B E T A 1  = a E T A 1 / 5 7 . 2 9 5 7 7 9  
6ETAU = a k T A U / 5 7 . 2 5 5 7 7 9  
T B I  = S I N 6 o E T A I ) / C U S ( D E T A I  I 
TBLl = S f , J ( B t T A U ) / C J S ( d E T A I ) )  

10 	&HUT = R H O I P  
RHOV I = H T F L  /t3 t iNB I I / P  1 T C H / C O S ( B t T A I  ) / R H (  MBI ) 

20  	V I  = K W V I / & H J T  
L A M d O A  = K M i i I ~ I ) * i V I * S I N ( B t T A I  l * O M E G A * K M ( M B I ) )  
T T l P  = l . - i V I * * Z + 2 . + 0 M ~ j A * L A M B D A - ( U M ~ ~ A * R M i M ~ l )  ) * * 2 ) / C P T I P  
I F ( T T I P . L t . 0 . )  G J  TU 3 0  
R H O M B I  = R W I P * T T I P * * E X P U N  
I F (  A B S  (KHUMB I - K H O  T I  / i 3 i i U I  P .LT .  000001 ) 60 T O  40 
RHUT = K t i c r M B I  
GO T U  20 

30 	WTFL = W T F L / 2 .  
N E K i 2 1 =  N E K (  2 ) + 1  
d K  ATEL 6 t l O Z O  1 WTFL 
I F  L N E K  ( 2 1 .Ehl -10I S TOP 
GLI TU 10 

40 V I  = K h U V I / K H U M B I  
L A M t j o A  = K M l M B I  I * [  V I + S I N ( B E T A I  ) + U M E b A * R H ( M d I )  ) 

C 

C C A L C U L A T k  I q A X I M b M  V A L U E S  F d K  KHU*W A T  L E A D I N G  AND T R A I L I F l G  EOGE 

C 

T Y L  = i .*UHEbA*LAMBUA 
A A  = 4 T H L - ( J M t G A * R M i M B I )  ) * * 2 ) / C P T I P  
TPP = T I P * I l . - A A )  
BB = T G K O W T P P  
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T T  1 P  = l . -Bt j  / C P T I P - A A  

KHOT = R H U I P * T T I P * * E X P O N  

R H U H M I  = K W T * S Q R T ( B B )  

AA = (TWL-(JMEGA*RM(Mk3U2)  )**2) / C P T I P  

T P P  = T I P * ( l . - A A l  

B B  = T G K d W T P P  

T T I P  = l . - B B / C P T I P - A A  

KWT = K H U I P * T T I P * P E X P O N  

RHLIWMU = K H 3 T * S P K T ( B B J  


C A L C U L A T E  VU ANU H - C K I T I C A L  A T  B L A D E  L E A D I N G  AND T R A I L I N G  EUGE 

KHUVO = WTFL /BE(MBUZ)  / P I T C H / L O S ( B E T A O I  / R H ( M B O Z )  

KHOMBZ = KHJIP 

TULMR = TWL- ( U H k G A * R H L M B O Z J  I**.? 

L E K (  1 1 = 1  

D E N S T Y  C A L L  NU. 1 

C A L L  OENSTYL KHUVU ,RHi)MBZ ,VU ITWLMRSCPTI P v E X P O N ,  RHO1 P ~ G A M IARIT I P  I 

W C K I  = SURT(  T t i R U Z * T I P * ~ l . - ( T W L - ( O H E G A * R M ~ f l ~ I )  l * * Z ) / C P T I P l l  

WCKO = SURT( T G K O t i * T I P * ~ 1 . - ~ T W L - ~ O H E G A * R H o  I * * Z ) / C P T l P ) )  


C A L C U L A T E  6 k T A  C U K R k C T E U  Ti) BUUNOARY A-N AND G-H 

TMLMR = T W L - ( O M E G A * K M ( l )  ) * * 2  
K W l  = R H U M a I  
T I 3 1 1  = 1 .E20 

50 T b I T = ( T 8 I /  B E  ( M i 3  I )*Ri-li)l /RHUMB I t OMEbA* ( R M  ( M B I  I **2-RM( 1) **2 I *RHO1 
l / M T K * P  I T C H I  * B t (  1I 

I F ( A B S ( T B I I - T B I T ) . L T . . 0 0 U 0 1 )  GO TU b 0  
T B l l  = T B I T  
KHUV I = NTkL /P  I TLH*SL)R T L 1  + T b I  L**2  / B E  (1I / RM( 1) 
L E K (  l ) = Z  
omsrr CALL NU. 2 

C A L L  O E N S T Y  ( K H L I V I  , K H i l l s 4 A  ~ T W L M R I C ~ T I P I E X P O N ~ K H ~ I P I ~ A M ~ A K ~ T I ~ I  

GO TU 50 

60 T t l l  = T B I T  
BTAIN = A T A N ~ T B I J * S ~ . ~ Y ~ I ~ ~  
THLPIR = T W L - ( U H E 6 A * R M ( M M ) l * * Z  
KHOMM = K H O f l B 2  
TBOM = 1.�20 

7 0  Tb0T = L TBU/BEIMdOZ)*KHUMM/HHUM~2tUMtGA*(KM( MBOZ l * * Z - R M (  HH ) * + Z  I * 
l R H O M M / d T F L * P  I T C H  ) * d E ( t i M )  

I F  ( A ~ S ( T B U Y - T B O T ) . L ~ . . O O ~ O ~ IG O  TU 80 
TBUH = I B O T  

HHU VU = w T F L  /P I TCH* SUR T 1 1. t Ttl  OM* * 2  1 /BE (MM) /&?I
( MM) 
L E K (  11=3 
DENSTY C A L L  NO. 3 
C A L L  D t N S i Y  ( K H U V U I H ~ ~ ~ M , A A , T W L M K t C P T IPIEXPUN,KHUIPIGAMIAR,T I P )  

C 
C 
c 

C 

C 
C 
C 

c 

C 

C 
C 

C 

GO TO 70  
BO r h u  = TMT 

B T A U U T  = A T A N L T M J ) * 5 7 . 2 9 5 7 7 9  

C A L C U L A T t  T V ,  I T V ,  I V ,  UTUMVI ANI) B E T A V  

I T M I N  = 0 
I T M A X  = N B B I - 1  

C TV, l T V *  AND OTDMV UN B L A U E S  
DO 90 IY=MBI,MBL) 
L E R (  z i = 1  

C B L C D  C A L L  N J .  1 
C A L L  BL1( MV( I M  1,  TVL It41 1) ,DTOMV( 1 MIL) 

I T V (  IM, 1 1 2  I N T (  l TVL I M P1)+ 3 T L R )  / d T )  

I F  ( T V ( I M 9  l ) . t iT . -DTLR)  I T V ( I M I ~ I = I T V  

I T M  I N =  M I N O (  I T M I F I ,  I T V I  I M  1 1 1  1 


L E R ( Z J = Z  
C B L C O  C A L L  NJ. 2 

ARRAYS 

INF 


I M P  ) t1 


-1 
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c M L C U  C A L L  NJ. 3 
C A L L  B L 3 1 M V I  I M ) , T V L I M , 3 )  , U T U M V L l M i 3 )  r l N F )  
I T V (  I M , 3 ) =  I N T L  ( T V ( I M , 3 ) + d  T L K ) / r l T )  
I F  I T V  1 I M  9 3 )  .GT.-UTL% ) I TVL I M.3) =I TV L I M 1 3  1 +l 
I F  L I M  .bT.MdUJ GO TO l U 0  
T V I  I M r . 3 )  = T V (  I M , 3 ) + P I  TCd 

100 	I T M I N =  M I N O (  I T M l I ~ r I T V ( I N , 3 ) )  
L E K (  2 ) = 4

C 	 B L L D  L A L L  N3. 4 
C A L L  BL4L MVL IM) ,TVL I M  ,4) 1UTDMVL I M,41 9 I N F )  
I T V L  1 M , 4 ) =  i N T L L T V L I M , 4 ) - D T L R ) / H T )  
I F  ( T V t  IH,4)  .AT.UTLK) 1 TVL IN,4) = I T V L  1 M 1 4 )  -1 

110 I T M A X =  MAXDL I T H A X , I T V L I M , 4 ) )  
C I T V  AND I V  U P S T R E A d  O f  F K U N T  B L A D E  

F I K S T  = 0 
L A S T  = N b B I - 1  
UU 120 I M = l , M B I P l l  
I V l  I M  1 = N 8 b  I +  ( 1M- 1) + 1  
1 T V (  I H , l J =  F I K S T  

1 2 U  I T V L I M , i ) =  L A S T  
c I r v  B E T W E ~ I UCKJNT AND REAK 8 L A o t s  

I F  (M~UPl. t iT.+l&12Mi) bU TO 140 
L A S T =  I T V t M E  I2 ,4 )  
F I K S T =  L A S T + l - N B 8 1  
DO 130 I M = M B O P L t M B 1 L M 1  
I T V (  I M , 3 ) =  F l R S T  

130 I T V L  I M 1 4 1 =  L A S T  
i T M l N  = M IkOl I T M I N , I T V ( M B U P l  9 4 )  I 

C I T V  DOWNSTREAM d F  K E A K  & L A D E  
140 	L A b T =  I T V ( M t i U Z s 4 )  

F I K S T =  L A S T +  l - N b B  I 
DO 150 I H = M d U L P L , M M  
I T V L  1 M t ; l ) z  F I K S T  

150 I T V L  I M 1 4 J =  L A S T  
I T M I N  = ~ I N O L I T M I N , I T V L M M , 3 ) )  

C F I N I S H  L A L C U L A I  I N t i  I V  AK%A,Y 
I V L M M I  1 = N B B I 4 M b I M l t l  
MBOT = N l N O L  MMU 9 Mi3 I 21M 1) 
I F ( M B I . G T . M B U T )  GO T i l  165  
00 160 l P i = M S I , H B U T  

160 1 V (  i H + 1 )  = IV(IMI+ITV(IH~21-ITVLlM,llt1 
1 6 5  I F I M B I Z . t i T . H 6 O )  GU T i l  180 

UO 170 I M = M d I Z , M B O  
170 I V (  I H + I J  = 1 V (  I M  ) + I T V L  AM92 J-ITVL I M  93 ) t I T V (  I M P $1 - 1 T V L  I M I  11+2-Nt )BI  
180 DO 190 I M = M d O P l , M M  

190 I V (  I M + 1 )  = I V I  I M ) + I T V I  I M , 4 ) - I T V l I M , 3 ) + 1  


C B E T A V  A K K A Y  
DO 203 S U R F = L p 2
DJ 200 I M = M t i I ~ M B J  

20 U B E T A  V ( I M  ,S UK F J = A TAIL L 0 TJ MV L I M t 5UKF 1 *R M I M) I *5 7 29 5 7 7 9  
UU 210 S U K F = 3 , 4  

UD 210 I M = M B I L , M B U 2  


210 B E T A u ' i  IM,SURF)  = A T 4 N ( D T 3 M V L I M 1 S U K F ) * K M ( l M ) ) 4 5 7 . Z 9 5 7 7 9  
N I P  = I V ( M M J + Y M B I - l  
L I R i T t t  t i l U 3 O )  V I v K H U W M I  r v l C K I  ~ B T A I N ~ V d , K H U W M O , U C R O , B T A O U T  
WK I T t  I tt 1040 1 P I T L H I ~T p H H 1  ,HM2 9HM3 
W K I T E L 6 r  1050)  I T M I N , I T M A ~ i L A M M O A , N I P  
W R I T E (  691060)  L S U k F , B V ( S U K t )  , S U R F = 1 , 4 )  
I F [ B L D A T . l t . O )  GU TU 230 
F I K S T  = H B I  
L A S T  = M&U 
W R I T t  (6,1070) 
DU 220 S U K F = 1 , 3 , L  
I = S c l K F + L  
W K l T E  Lbt 10801 S U R I - , I , ( M V I I M  

1TVL IM, 1 )1DTUPiVL I M , I ) , I M = k I K S  
F I K S T  = N B I Z  

220 	L A S T  = 14BU2 
W K i T E  ( 6 9  1O9O) L I M , M V ( I M )  r K M  

230 C O N T I N U E  
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C 

C C A L C U L A T E  MH A N D  D T D M H  A K R A Y S  

C 


I T 0  = I T V ( l t 1 )  
MRTS = 1 
IHS( 1) = 1 

MH( l r  11 = 0. 
DTDMHt  1 9  A )  = 1.E10 
LEK( 2)=5 

C U C D  AND K U U T  ( V 1 A  M H L I K I L )  C A L L  NO. 5 
C A L L  M W K  IL( M V t I  T V (  1t 11 r B L 1  r M B I  t W O t 1  T O t H T  t D T L R r D  r I MS( 1) r M H (  1 ~ 1 1 s  

l D T D M H (  A t 1  b t M R T S 1  
IF ( I T V ( H B U r  l ) - I T V L M B U t Z I * N d B I  aNE.21 G O  T O  2 4 0  
I M S L  = I M S ( 1 ) + 1  
MH( I M S L t  1) = M V ( M B U )  
DTOMHt 1MSL.L)  = - 1 . E 1 0  
I M S (  A )  = I M S L  

240 	 iws(2) = o 
M K T S  = 1 
L ER ( 2 1 =6 

C B L C O  A N I  KUOT ( V I A  M H U K I L )  C A L L  NU. 6 
C A L L  HI-DR 1L( M V t  I T V (  1t2) t & L 2  r M B I  t M j U t l  T O t H T  t D T L R t 1 r  IMS ( 2 )  t M H (  1.2 ) t  

ADTDMH( 192  1 t N R T S )  
I M S ( 3 )  = 0 
I F  ( I T V ( i * ( O  1213 ) - I T V ( M t i l Z  14). NE. 2 .AND. 

1 I T V ( M B I 2 r 4 ! - I T V ~ M 8 I Z ~ 3 ~ . N E ~ N B B l ~ 2 ~G O  TO 2 5 0  
M K T S  = 1 
IHS( 3 1  = A 
MH( 1.3) = M V ( M b l 2 )  
DTUMHI i , 3 )  = 1 . E i 0  

250 L E K ( 2 ) = 7  
C 13LLU A h U  K O J T  ( V I A  M H d K I L )  C A L L  NU. 7 

C A L L  H W K  ILL MV.1 T V (  1.3) i d L 3  r M B I  2 *MI30 . I  T O t H T s D T  L R t l  t I M S  ( 3 )  v MH( i t  3 ) t  

I T O t H T  t D T L R t 0  t IMS ( 3 1  t 

GO TO 2 6 0  

V ( MB I 2  v 4 1-11 V ( MI3 12 r 3 1 EU 

C B L L D  AND R J J T  ( V I A  M H U R I Z )  C A L L  Nu. 9 
C A L L  M t O K  IL( M V t I  T V ( 1 1 4 )  t B L 4 , M B I Z  rMBOZ r I T O t H T  t D T L R t 1  t 1 M S  ( 4  I v 

1MH( l t 4 ) t U T D Y H I  1 t 4 ) s M R T S )  
I = MAXO( I M S ( l ) , I M S ( L )  tIMS(31 t K M S ( 4 ) )  
I F  ( I . L E . 1 0 0 )  GU T U  2 7 0  
H R I T t (  6s 1100 4 I 
S T O P  

C 

C C U K K E C T  I T V  ARKAY F J R  O V t K L A P P I N G  P U K T I O N  OF B L A D E  S J R F A C E  3 

C 


270 I F  (MBI2 .GT.MBO) GO TO 2 9 0  
00 260 I M = M B I 2 , M B U  

280 I T V (  I M t 3 )  = I T V ( I M t 3 ) + N B B I  
290 I F ( B L D A T . L E . 0 1  GU TO 300 

W R I T E  ( 6 t l l l C )  ( I H r I V ( 1 M )  r L I T V ( I M t S U R F 1  t S U K F = l t 4 )  r I f l = l t M M 1  
C 
C C A L C U L A T E  K M h t  B E H t  ANU B E T A H  A R R A Y S  
C 

30U 	L E (  tSLDAT.GT.0) W R I T E ( 6 t l l Z 0 )  
W 320 S U K F = l t 4  
C A L L  S P L  I N T t M K  rRMSP r N R  SP r M H  (1r SURF) 9 1  M S t S U R F )  r R M H (  1, S U R F )  t A A A )  
C A L L  S P L I N T (  MK t d E S P  t N & S P  sMd (1 9 SURF ) t I M S ( S U R F )  t b E H (  1rS J R F )  9 A A A )  
I M S S  = I M S i S U K F )  
I F ( I M S S . L T . 1 )  GO TO 32U 
OU 310 I H S  = L t I M S S  
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310 BETAHL I H S , S U K F )  = A T ~ ~ U ( ~ T D M ~ L I ~ S I S U K ~ ) ~ ~ M H ( I H S,SUKC) I * 5 7 . 2 9 5 7 7 9  
1F L BL CAT GT e 0  ) JR 1TE L 6, 11303 SURF v L t4i 1I M vSU RF ) 9 RHH I I H p S J R F )  , 

1BEHL I # . S U K F ) , d E T A H L I M , S U K F )  , D T D H H 1 l H , S U R E )  , I M = l s I M S S I  
320 C O N T I N U E  

I F  I t i L C A T . L t . 0 )  GU TU 340 
H K I T E  L6,1140)
IT = I T M I N  

330 IF ( 1 T . G T . I T M A X )  G u  TO 3 4 0  
TH = F L O A T ( I T I + H T  
W K l f t  1 6 , 1 0 1 0 )  I T s T H  
I T  = I T + 1  
ti0 TU 3 3 0  

340 I F ( N I P . L E . 2 0 O u )  GU TU 350 
W R I T E 1  t t  1150) 
STUP 

350 r i R I T E  (6,lOC10) 
KETUAN 

l o b 0  FOCtMAT ( 1 H 1 )  
1010 FUKMAT ( 4 X v  I 4 , G 1 6 . 9  
1020 F J R M A T I ~ L I H L I N P U T  WEIGHT F L U M  ( W T F L )  I S  TOO L A R G E  AT t )LADE L E A D I N G  

lEUGE/lLH WTFL REDUCED T O v G 1 4 . 6 )  
1030 FOKMAT L l H 1 / / / / / 2 4 X ,  l D H F K E t  S T K E A M i B X  v L 3 H H A X I  MUM VALUE,  

1 7 X s  8 t i C K I T  I i A L  t 30x9 1 4 H B E T A  CLlKREC T E D / ~ ~ X I ~ H V E L ~ C I T Y1 1 3 X  ,9HFUR hHU*d 
L t  LOX, 8 b V E L J L I T Y v 3 l X s l l H T d  B U U ~ O A K Y / l X , 1 7 H L E A U I ~ GEDGE B-M,3G18.5, 
3 1 2 x 1  12bBUUt%OAKY A - N t G l 8 . 5 / l X t l I H T K A I  L I N G  EDGE F - I , 3 G 1 9 . 5 , 1 2 X 1  
4 1 2 H I j U U N U A R Y  C H , G L 8 . 5 )  

1040 FORMAT 1 / / / / / 5 X 1 2 8 H C A L C U L ~ T t U  P A G R A M  C O N S T A N T S / / j X , 5 H P I T C H , l 3 X ,  
LZHHT, 1 3 X ,  3 H k I M l p  1 3 X .  M H M 2  9 1 3 X  ,3H t iH3  /1 X15G15.7  I 

1050 F U K M A T  t / 5X ,5 H  1TM 11110x9 5 d  I TMA X/UX I S ,1OX t I 5 / /  5 X r 5  HL AM BOA/ 1X e G l 6  - 7  
1 / / / 5 X ,  3 3 H N U M U t R  J F  I i N T E R I O K  MESH P O I N T S  = ,I5) 

1060 FL lKNAT i/ / / /  / /  5X s 2 3 H S U R C A C t  BOUNDARY V A L U E S /  / 5  X, 7HSUi (FACE,  7 X  * 2HBV 
1/( SX, 1 4 * 4 X , F  1U.5) J 

1070 FUKMAT L l H l t  6 X , 6 2 H B L A D t  OATA A T  I N T E R S E C T I C N S  O f  V E R T I C A L  MESH L I N  
l�S W I T t i  L ~ C A O E S )  

1080 FURMAT ( l H L ,  2 2 X , 1 3 H E L A O t  SUKFACE r I 2  , 1 5 X , l 3 H B L A U E  SURFACE,  1 2 / 7 X v  
1 1HM ,1 4 X  v L H T V  v 1 1 X s  5 d J T J M V  t l 2  X t Z H T V  9 1  l X , S H I I T O M V /  ( 5 G 1 5  - 5  I ) 

1090 F U K N A T  11H1,  1 3 X t 4 4 H S T K t A M  WEE T COORUI N A T E S  AND THICKrUESS TADL E / 
1 LX t 2H 1149 7 X  ,1HM 1 4 X  t I t i R  1 3  X 3-1 SAL 1 3  X 9 1  t i  �I1 2  X ,5t i  O B I  D M I  ( 1 X  9 I3 9 

2 5G11.5)) 
1100 F J K M A T L 3 4 H L O N t  OF THE MH A K R A Y S  I S  TCU L A R G E / 7 H  I T  t iAS .15 ,  8H P t J I  

l N T S )  
1110 FUKMAT L 4 H l  IM ,9X, MI V ARKA Y r 3 2 X f 9 H I  TV A K R A Y / 3 8 X  , 5 H B L A U E / 3 7 X ,  7HSJR 

l F A C E t  3x9 1HI.v 5Xs LHZ,  5X,  l t i 3 , 5 X , l t i 4 / 3 9 X , 3 H N U .  /L1 X t I 3 r 5 X  t I 1 3  ,2 5 X  t 
24(  14, 2 X )  I ) 

1120 f O R M A T  L 6 7 H l M  L U U K O  I N A  T t  S OF I N T E K S E C T I  UlvS OF H U R I  L O N r  A L  MES H L I N �  
15 W I T H  U L A D t )  

1130 FUKMAT L Z S H L M H  ARKAY - b L A U E  SURFACE , 12 / /15X ,2HMH,19X,3HRMH, l9Xp 
1 3Ht) t H 7  1 8 X  ,5 H 8 t  TAH 9 1 7 X s  5HD TJMH /I 5 6 2 2  4)J 

1140 FUKMAT L 4 3 H L T H E T A  C U d d D I N A T E S  OF H U R I L U N T A L  MESH L I N E S / / ~ X ~ Z H I T I  
1 5 X  v 5 H T  h E T A  

1150  F U K M A T ( 4 8 H L T H t  NUMdEK UF I N T E R I d A  MESH P O I N T S  EXCEEDS LO30 J 
END 
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s u t l u w ~ i ~ ~COEF 
C 
C C O E F  C A L C L L A T E S  I - I N I T t  D l F F t K E N C E  C C E F F I C I k N T S ,  A ,  A N 0  CONSTANTS,  K t  
C A T  A L L  UNKNOWN M E S H  POINTS F U K  Tr(E E N T I R E  R E G I O N  
C 

CUMMljN SKU, I T t K  9 I t N D  s L k R  ( 2 1  ,NER( 2) 
COMMJN / A U K < # U /  A ( 2 0 0 0 * 4 J  ~ U ( 2 0 0 0 )tK(2000)  v K H O ( 2 3 0 3 )  
CUMMUN / i k P /  GAM ,AK , T I P  .KHOI  P WTFL t HTF L S P  t LIM~GAIURF, B E T A 1  t BETAU, 

l M B I t  MBU, MB 12 t M U J  2 SMMt dB81 t N B L  t NR SP t M R ( 5 D )  t R H S  P (50)t BES P I  53 1 , 
2 B L  D A T  t AAN DK ,EK SOK t STR F N,S L L K U  P I N TV L t SU R V L  

CUMMUN /CALCUIU/ +idI M  1r M B l  P l  ,M B U M l  t H B O P l  M b I 2 M l  Mt)I 2 P i  t M B O Z M l  t 
l M B O Z P  l * M Y M  I t  Hn 1,HM2,HM3tAT,DTLR DMLR , P I  TCH ,CP , fXPON,TdW pCPT IP, 
ZTGRUb,  T B I  ,T B U s L A M n D A  9 TWL, I T M L N t  I TMAX ,N1 P , I  MS 1 4 )  BV ( 4 )  MVL 1 D D  ) t  

3 1 V L  1 0 l ) , I T V (  l ( J O t 4 ) , T V ( 1 0 0 , 4 )  r D T D M V ( l U 0 , C )  , B E T A V ( 1 3 0 , 4 l t  
4MH( 1 0 0 , 4 ) r D T O M H (  1 0 0 ~ 4 )t B I i T A H ( l O O , 4 )  , K M H ( 1 3 0  14) p B E H ( l . 3 3  1 4 1 ,  
5 K H (  1 0 0 1 ~ B E 1 1 0 0 ~ ~ U B D M ( 1 0 0 ~, S A L ( 1 0 0 )  , A A A ( 1 0 0 )  

CUMMON / H K b A A K /  H ( 4 ) 1 K ( 4 ) t B ( 4 )  r K A K ( 4 )  t K A ( 4 )  , I H l 4 ) , R Z , B Z  
I N  1 E G k R  t j L U A  T,AANDK, ER SOR ,S T K F N  ,SLCRD ,S U K V L t  A A T E M P  t S  J K F  SLl RFBV 9 

A F  I R S T t UP P k R  t UP P R  B V ,5 1 ST ,SR W 
Kk A L  K ,KAK 0 L A M B D A  t LHA X t MH t MLE MR t M S L  t MSP t MV, MV I M1 

c I N  I T  I A L  1L E ARKA Y S 
I T t K  = 1 T t K + 1  
I H ( 1 )  = 1 
DO 10 i=2,4 

10 i H i  I )  = 0 
I F (  I T V ( M B I L , 3 ) - I T V ( M O L Z , 4 l . E ~ . 2 )  I H ( 3 )  = 1 

I T V ( t 4 d  L 2 t 31 .E U. NBBI -2. 1H( 3 II f i (  I T V  (Mt j  1 2 ~ 4 ) -
I N C U M P R t S S l B L E  C A S E  

IF (  L A M  .NE 1.5.uK.AK.N~.10U(J..OR. 
I E N D  = 1 
GU TO 40 

A D J U S T M E N T  JF P K I N T I k t i  L U N T i i U L  
20 I F (  I T E K . N ~ . l . A N D . I T t K . N ~ . Z )  

A A N M  = A A N O K - 1  
ERSUR = E K S 3 K - 1  
S T R F N  = S T K F N - 1  
S L C R U  = S L C R U - 1  
I N T V L  = I N T V L - 1  
SURVL = S U K V L - 1  

30 I F (  I kNG.VE.0)  Gt i  TU 40 
AAiYUn = AANI)K+2 
EKSUK = E R S J K + Z  
S T K F N  = S T K F N t Z  
S L C K U  = S L C A D + 2  
I N T V L  = I N T V L + Z  
SURVL = S U K V L + Z  

C 
C F I K S T  V E R T I C A L  MESH L I l u E  
C 

40 LJO 5t i  i P = l p N B B I  
A(  I P S  1) = 0. 
A( I P S  2 I = 0. 
A(  I P ,  3 )  = 0. 
A(  l P . 4 )  = 1. 

5 0  K (  I P 1  = H M l * T b I / P I T t H / R M ( l )  
C 
C U P S I K E A M  UF t i L A D E S ,  t X C t P T  F U R  
C 

I F ( 2 . G T . H t l I M l )  CU TO 7 0  

AND. M B I  2 .  NE. M B L l P l  = 1 

T I  P.NE.1. E61 G O  T U  2J 

V A R I A B L E S  
G U  TU 30 

F I K S T  V E K T l C A L  M k S H  L I N E  

00 60 I M = 2 r M B I M l  
60 C A L L  C U E F P i  1 M t  1 t L )  

C 
C BETWEEN F K U N T  B L A D t S  
C 

7 0  MBUT = M l N O ( M B O , M B 1 2 M l )  
I F ( M U I . G T . M B U T )  GU TU 
uo no IM=MBI,MBOT 

8 0  C A L L  CUEFBbL 1 M , A t 2 , 1 )  
9U I F ( M B I Z . G T . M B U )  GO TU 

C 
C O V E R L A P P  I N G  C A S E  
C 

90 

110 
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l b 0  L A L L  C 0 E F t ) B l  1 M r 3 r Z r 4 )  
GO ro 130 

C 
C NUN - O V E R L A P P I N b  L A S t  
C 

110 l F l M M U P l . b T . M 8 I Z M l ~  GO TU 130 
00 120 I M = M B O P l i M 8 1 2 M l  

120 C A L L  C U E F P I  I M r  394) 
C 

C B E T w i i t N  REAR B L A U E S  
C 

130 M B I T  = M A X 0 1  Mt! I L r M d O P l )  
I F l M M I T . G T . N B d 2 )  ti0 TL) 150 
OD 140 I M = M t ) I T * M O b Z  

140 C A L L  C O E F B B (  I N  r 3 r  4 9  3)  
C 
C DUWl\rSTKEAM LIF 8 L A O E S  E X L E P T  I-OK F I N A L  MESH L I N E  

150 I F I M B U ~ P 1 . G T . H M M 1 )  GU TO 170 
OLI 160 I M = I 4 t i O 2 P l r M f l M l  

160 C A L L  C U E k P I l M r 3 r 4 1  
C 
C F I N A L  V E R T I C A L  M E S H  L I N E  
C 

170 IVMM = I V L M M )  
DO 1 8 0  I P = I V M M * N I P  
A I  I P r  1 )  = 0. 
A I  I P t  2 )  = 0. 
A( I P S  3 )  = 1. 
A I  I P r 4 )  = 0. 

180 K (  I P )  = - H M 3 c T t ! 0 / P I T G H / ~ M ( M M I  
C 

C T A K E  LARE O F  P d I N T S  A U J A C E N T  TU D r  AND C A S t S  WHEN P U I N T S  J t C t E t  O R  F 

C AKE G R I D  P O I N T S  

C 

L P O I N T  8 


I P  = I V ( M 8 1 3 1 )  
A I  i P s 4 )  = 0.  

C P O I N T  J 
I F 1  i T V ( M 8 1 2 ,  3 ) - I T V I M 8 1 2 t 4 ) . N E . 2 1  G O  TO 190 
I T  = I T V ( M B I 2 , 4 ) + 1  
I P  = I P F ( M B l 2 M l v I T I
K( I P )  = K l  I P  ) + A (  I P r 4 ) P B V ( 4 )  
A( I P ,  4 1  = 0. 

C P O I N T  C 
190 I F 1  I T V l M 8 O ~ 1 ~ ~ I T V l M B U ~ L l + N ~ B I ~ N E ~ 2 ~GO TO 2 3 0  

I T  = I T V l M B J r 1 ) - 1  
I P  = I P F ( M B L I P ~ , I T I  
A(  I P t  3 )  = 0. 

C P O I N T  E 
200 I F 1  I T V I N B  1 2 , 4 ) - I T V I M B I L t 3 )  .Nt .  N86I -2. OR. M a I 2 - EO. MBOPL)  GU T O  213  

I P  = A V l 4 ( d 1 2 M l I  
K l  I P )  = K l  I P  ) + A l I P v 4 ) * B V 1 3 1  
A I  1 P 1 4 )  = 0. 

C P U I N T  F 
210 AF ( I I T V I  MBiJ 2 9 3 ) - I  T V I  r(d02 t 4 )  + N b B I .  NE. 2) AND. I I T V  ( H B U 2 1 3 )  

l - ITV(ME!JJ2,4)  . N t . 2 ) )  GU TO 220  
IP = I V ( M B U 2 P l l  

K l  API = K I I P  ~ + A l I P t 3 ) * B V l 3 ~  
A I  I P r  3 )  = 0. 

C 
C L I N E  K-L AINU L I k t  TU R l G H T  OF C-0 
C 

220 F I R S T  = H A X O l I T V L M l j U P 1 p 3 I + N 8 B 1  , I  T V ( M B U g 3 ) )  
l P K L  = IPFI?it)U,FlKST) 
I P L  = I P K L + l T V l M B U r 2 ) - F I A S T  
I P C O  = I P e ( M B d P 1 r F  I K S T - h d t l I  1 

230 I F (  1 P K L . d T . I P L )  K E T U R N  
K l  I P K L )  = K l  I P K L ) + A ( l P K L r 4 )  
K I  I P C O )  = K l  I P C O  )-A4 I P C D  9 3 )  
I P K L  = I P K L + 1  
LPCD = I P C U + l  
u) TO 230 
EN U 
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SUBKUUT I N  E C U E F B B t  1M, U P P E R  SLUWER P U P P R B V I  
C 

C c O E F n n  CALCULATES f i I i v I T t  DIFFERENCE CO~FFICIENTS, A *  AND CONSTANTS, K 

C ALONG A L L  V k K T I C A L  MESH L I N E S  NHICH I N T E R S E C T  B L A D E S  

C 


COYMIJI~ / A U K k W /  A ( L O 0 0 1 4 1  tUL2000)p K ( Z 0 0 0 1  r R H O ( Z O O 3 I  
COMMON / I N P /  GAM ,AR , T I  P , A t i U I  P 9 MTFL t WTF LSP,  OMEGA, O R F t  B E T A 1  9 BETAO, 

1 M 8  I t M t3UtM 8 IZ MGO 2 ,MM 9 N B b I  t Iya L r "4SP t MR L 50 ) 9 RMS P (50) BES P (  50 1 1 

2 B L U A T  t AANDK, EA SUK v S T K F  N ,S L C K U  t I N  T V L t  S U R V L  
CUMMUIN / C A L C U N  / At3 It4 1 9  MB I P1 ,MBUMl  ,M B O P l  9 MBI2 M l  ,MBI 2 P l t  MB02Ml  , 

l M B O 2 P  ApMMM A t  HM 1,HM2rHMJ, i iT ,UTLK t D M L R  ,P I  TCH t C P ,  E X P O N e T d I I  r CPT I P ,  
2 T G R O G t  IS1 9 TUU, LAMBDA ,T H L  9 I T M I  N 9 I TMAX r N I  P 9 1  MS ( 4  ) 1 BV ( 4  I t MV ( 100 I t  
3IVl 1 0 1 ) v I T V I  l L J 0 , 4 1 r T V ( 1 0 0 , 4 )  , D T D M V ( 1 0 0 , 4 1  , B E T A V ( 1 3 0 , 4 l t  
4MH( 100,4) t OTDMH 4 1OU.4) ,BETAH (10014) P R Y(100 14 i r BEH (133 1 4 )  t 

5RM( 100 ) t t 3 E ~ 1 0 0 ) ~ O B U M l l i J O )r S A L ( 1 0 0 )  v A A A ( 1 D O )  
CJHHUN / H K B Q A k /  H ( 4 ) r R ( 4 )  , 8 ( 4 )  t K A K 1 4 J  r K A ( 4 ) r I H L 4 l r R Z t B Z  
I N T t G E K  B L D A T , A A N U K v  t K  SUR t STKF Ne SLCRU t S U K V L t  A A T E H P  9 S U R k ,  S i l  R F B J  t 

l F I K S l  p UPPER, U P P K B V t  51s S T t  SRW 

R t  A L  K ,KAK ,L AM BOA t LMA X vMH M L t  MR ,MSL PMSPs MVs M V I  ML 

I F  l I T V l  1M , U P P t k )  . G T . I T V l  1 M  ,LOWER1 1 K E T U R N  

I T V U  = 1 T V L I M . U P P t K )  

I T V L  = I T V I I M , L U W E K I  

I T  = I T V U  - 1 

I P U  = I P f  l 1M 9 I T V U I  

I P L  = i P U + I T V L - I T V U  

ULI 90 l P = I P U , I P L  

I T  = I l + l  

C A L L  HKBl  AMs I T I I P I  

DO 10 I=1,4 

K A K l  I )  = 0. 

10 K A (  I )  = 0 
C F I X  HKB V A L U E S  F U R  L I N E S  C-U AND K - L  

I F (  IM.hE.Mt3JPAJ GU TO LO 
I F (  I T . G E . l T V l I M - 1 t 1 ) l  GU TU 20 
! P 3  = I P F (  I M - l , I T + N B B I )  
K l 3 )  = R H O L I P 3 1  

2 0  I F (  I M + l . N E . H t 3 J P l l  GO TU 0 0  
I F (  Mid I i P l - M B U P  1) 30,30*40 

3 U  I F (  I T - l T V l  I M , 3 ) )  6 0 1 5 0 9 5 0  
40 i F I I T . L E . I T V l A M + 1 ~ 4 l l  GU TO 60 
5 0  1 ~ 4  I P F ( I ~ + ~ , I T - N B J I ~= 

K l 4 )  = R H U (  I P 4 l  
c F I X  HkB V A L U E S  CLJH C A S E S  WHEKE MESH L I N E S  I N T E R S E C T  B L A D E S  

60 Ik ( 1 1  .EO. I T V l l M , U P P E k )  L A L L  8 1 K Y 1 2 I l  r I M t I T  t t J P P E K , J P P R B V )  
I F  ( I T  .Ed.  I T V l I M , L J W t K ) )  C A L L  B D R Y l 2 l Z t I M ~ I T r L a J E R , L O W E R I  
I T V M l  = I T V (  I M - l s U P P E K )  
I T V P A  = I T V {  I M + A , U P P E K )
IF ( I M  .til .MBU.ANU.UPPtK.Eu.3) I T V P l  = I T V P L + N t i B I  
I F  l I M  .Ed .MtlUP 1I I T V M l  = I T V M L - N b U I  
IF  l I T . L T . I T V M 1 )  C A L L  B U ~ Y 3 4 ( 3 , I H i U P P E R t U P P R B V l  
I F  I I T . L T . I T V P 1 )  C A L L  B O R Y 3 4 ( 4 , 1 M , U P P E K t U P P R B V )  

IF (  I M . � U . M ~ I L . A N D . L U U t ~ . E ~ . 4 1  GO TU 70 

LF( AM .EQ.MUUPl.ANU.LUHER.EU. 4. AND. MBl2.GT. HBOI GO T O  7 0  

I F  ( I T . G T . I T V (  I M - 1 , L J W E R )  I C A L L  8 0 R Y 3 4 ( 3 , I M , L O W E R , L O ~ ~ R )  


7 0  II-l IH .E~.MBO.AND.LUWER.EP.Z)  GO TU 60 
I F  4 I T . G T . I T V l  I M + l , L L l W E R ) )  C A L L  B U R Y 3 4 ( 4 , I M t L U W E R , L M E R l  

C COMPUTE A 8 \ 1 0  I( C O t F F I C I t N T S  
80 	C A L L  A A K (  I M P  I P )  

OD 90 1 ~ 1 ~ 4  
K (  I P  1 = I( ( I P  ) + K A K (  I ) * A  I I P, 1 1 

90 I F ( K A (  l).EU.li A ( i P , I )  = 0. 
R E T U K N  

C 
C COEFI' C A L C U L A T E S  F I N I T E  O I F F E K E N L E  C O t F F I C I E N T S s  A, A N D  C O N S T A N T S t  K t  
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C ALONG A L L  V t K T I C A L  MESH L I N E S  
C 

ENTRY C U E F P I  IH,UPPER,LUWER) 

I T V U  = I T V I I M , U P P E R )  

I T V L  = I T V L I M ~ L O W � K l  

I T  = I T V U - 1  

I P U  = I V (  I M I  

I P L  = I V (  I M + l ) - l  

uu 100 I P = I P U , l P L  

I T  = 1 T + l  

C A L L  H K 8 I  IM, I T ,  I P )  

I F  1 I T . E Q . I T V U )  K t 1 1  = R H O  

I F  l I T . E 4 . I T V L )  R ( 2 )  = R t i U  

IF( L M . N t . M B J P l 1  GO TO 100 

I F 1  I T . 6 E . I T V ( I M - L , 1 J 1  GO T 

1 P 3  = I P F I I M - l , I T + N 8 0 1 )  

K ( 3 )  = R i i d ( I P 3 )  

100 C A L L  A A K I  IM, I P )  
KL I P L  1 = KI I P L  )+A(  I P L  s 21 

W H I C H  D U  N O T  I N T � R S E C T  B L A D E S  

I P L )  
I P U )  

109 


K (  I P U )  = K ~ I P U ~ - A ~ I P U P ~ )  

& � T U R N  

EN D 


S U ~ R U UT I N  E tilin i rn ,  I T, IP) 
r
L 


C HKB C A L C U L A T t S  MESH S P A C I N G ,  H, D E N S I T I E S ,  RL A N D  R t  AT G I V E N  AND 

C A C J A C E N T  P O I N T S ,  ANO S T R t A M  S H E t T  T H I C K N E S S E S ,  B L  AND B, AT G I V E N  

C A N U  A U J A C E N T  P J I l u T S  

C 


CUMMJN / A U K K H O /  A l 2 O O 0 1 4 l  ~ U L 2 0 0 0 l ~ K l 2 0 0 0 )9 R H O ( Z O L i 3 )  
CUMPIJN / L A L C U \ I /  HB I H A  tP1BIP 1 , M B O H l  , M B O P l  , M B I Z  M l  t M B I Z P l  s MHUZML, 

1MBUZP i p M M M  1, HMl,HMZ,tiM3,HT,L)TLK rOMLR , P I T C H  ,C P,EXPON,THW*CPT I P ,  
Z T G R J  G 18 I ,TdU,  LAMBDA ,TWL , I  T M I  N t I TMA X 9 N I  P IMS 1 4  1 v BV I 4  1 I MV I l o @) I  
31Vl 101 ) , I T V l  1 0 0 , 4 ) , T V ( 1 0 0 , 4 )  v i J T D M V ( 1 0 0  ~ 4 ), B E T A V l 1 3 0 , 4 ) ,  
4 H h (  l c ) O , 4 )  ,UTDMHL 100141 ,BETAH (1009 4 )  v K M H ( 1 0 0  e 4 1  9 t lEH ( 1 3 3 . 4  1 ,  
5RH I 100 I ,I3E (  1001 DBDM I 100 I t S A L  I1 001 ,AAA (100 ) 

CUMMJN / i i K d A A K /  H l 4 ) , R l 4 1  , 8 1 4 )  v K A K 1 4 1  ,UAL4J , I H ( 4 l , R Z , B Z  
I l u T � t i E A  8 L U A T v A A N J K v t R  SORI S T K F N p  SLCKD ,SURVL,AATEMP,SJKF 9 S U R F B J  9 

i F I K S T ,  UPP t&, U P P k B V ,  51 STI SRrJ 
K E A L  U r K A K  r L  AMBUA tLM4 X r M t i  9 N L k  r M f i  ,MSL ,MSP,MV, 
hl 1I =  HT*Rr((  I M  ) 
H I  2 I =  t T * k M (  I N  ) 
H113)= MVI  I M I - M V L I M - 1 )  
H ( 4 1 =  M V I  I M + L ) - M V ( I M )  
K L  = R K I I  I P l  
I P 3  = I P F L  I M - l , l T l  
I P 4  = I P F l I M + l , I T )
R( 1 )  f KHUl IP-11 
R I Z )  = i ( r l U ( I P + l l  
R ( 3 )  = R H L l l I P 3 )  
K ( 4 1  = K H U ( I P 4 )  
t3Z= B t l  I r ( )  
BL 3 1 =  BEL IM- 1 )  
B l 4 ) =  B E 1  1 M + l )  
R E T U K N  
END 

M V I  M1 
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S U B R U U T I l v t  A A U (  I M i i P J  
C 
C APK C A L C U L A T E S  F I N I T t  O l F F t K E N C E  C O E F F l C I E N T S p  A, AND CONSTANT, K, 
C A T  A S I N G L E  M E S H  P O I N T  
C 

CUMMUN / A U K R H O /  A L L 0 0 0 1 4 1  1U120001r K ( 2 O O O l  1&IU(2033 I 
C U M W N  / C A L C U N /  MB I M l ,  M B l  P l  , M B O H l , M B O P l  ,MB12M1 . M B I 2 P 1  t M B 0 2 M 1  , 

1MBOZP 1 , M Y M  1, HM 19HM2,  H143,dT ,OTLR sDMLR , P I T C H  ,C P p E X P O N t T d W ,  CPT I P ,  
2TGKUGv 181, TB0,LAMBOA 9 T H L  ,I TMI NII TMAX s N IP 1 1  MS ( 4 1  s BV (4  I s MV t 100 1 9  

3 1 V (  1011. I T V (  1 0 0 ~ 4 1r T V ( l O O v 4 1  ,DTOMV( lOO 9 4 1  v B E T A V ( 1 3 3  9 4 1  v 
4MH1 l U 0 ~ 4 1 ~ U T D M H ( 1 0 0 ~ 4 ), B E T A H t l O O v 4 )  , R M H ( 1 0 0 , 4 )  , B E H ( 1 0 3 , 4 1 ,  
5RM( 100 ) , t iE(  lOOJ,L)BUM( l U 0 1  r S A L i 1 0 0 1  vAAA(10C.l) 

CUHMUN / r l K B A A K /  H ( 4 l , R ( 4 ) , B i 4 )  r K A K ( 4 J  1 K A L 4 )  1 I H ( 4 l r R Z 1 B Z  
I Y T E G E R  BLUAT,AANUK,EKSOR, S T K F N I S L C K O ~ S U R V L ~ A A T E M P ~ S J R F ~ S U R F B V ~  

MVI M V I  M l  

4 1 )  - S A L (  I M I /  RM( I M I  

S U t l R d U  T I N  t BURY 12 ( 1  s 1 M  I T t  SUKF ,SURF 8 V l  
C 
L t l D H Y 1 2  L U K K t C T b  V A L U t b  L U M P U T E O  BY H K B  WHEN A V E R T I C A L  MESH L I N E  
C I N T t R S E C T S  A M L A D t  
C 

CUMF(L) N / LA L L d h  / MB 1M 1 MB 1P 1,Mt i  O M 1 ,  Mi3 UP1 t M & I  2 M l  s M B I  2 P l  v Mi302 M 1  
l M B l l l P  1,MMM 1, HPf 1, H M Z , ~ M 3 , H T , D T L H , D M L K  , P I  TCH ,CP ,EXPON,TdW.CPT I P ,  
ZT GkO G T t i  I Te) ti, LAMBDA 9 T WL ,I TMI h t I TMA X ,N I  P 1MS ( 4 I p BV ( 4 I ,MV 4 103 ) t 
3 1 V (  1 0 1 l , I T V (  l O C , 4 ) i T V ( 1 0 0 , 4 )  , D T D M V ( l U 0 ~ 4 )  v B E T A V ( 1 3 0 , 4 l r  
4MH( 10014) ,DTUMH( 1 ~ ~ 0 1 4 )t d t T A H (  100 ,4 1 ,R M H (  130 14) ,BEH( 1 0 3  r 4  1 ,  
5KN( 1 0 0 ) , B ~ ( 1 0 0 ) r 0 8 0 M ( 1 0 0 )  rSAL(100) , A A A ( 1 0 0 1  

CUMMON / K H O S /  K H O H B ( 1 0 0 , 4 )  , R H O V B ( l O O p 4 1  
CUMMON / H R B A A K /  H ( 4 l , K ( 4 )  , t i (4)  s K A K ( 4 1  1 K A ( C )  , I H ( 4 I , R Z s B L  
1 Y  T �ti ER tiL UA T ,A ANOK t R SOK ,S T R F  N IS L L R D  1 SclKV L ,A A T  tMP 9 S J  R F  9 S U RF t l V  t 

1F I R S T  WP EK, U P P R B V t  51 ,ST, SRW 

K E A L  K P K A K,LAMBDA ,LMA X ,MH ,MLE ,MU ,MSL ,MSP rMV,MV I M 1  

H( I = A M S ( F L U A T (  I T l * H T - T V I  1M t  SURF I I + K M ( I  M I  

R( I ) =  K W V B L  I M v S O R F )  

K A K (  I l = B V i S U R F & V )  

K A (  1 ) = 1  

R E T U R N  

t N  D 
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SUbKOUT I N  E t)UR Y 341I t I M t SURF 9 SUKF B V )  
C 

C B C R Y 3 4  C U K R E C T S  V A L U E S  C O M P i l T t D  B Y  H R B  HHEiY A H U K I L U N T A L  MESH L l N k  

C I I U T k R S E L T S  A t l L A O E  

C 

COMMON / C A L L O N  / Mt) 1M 1, M3 1P 1  t M B O M l  p M B O P 1 t  MB I 2  M1 t M B I 2 P l p  M a O Z M l t  
W B D 2 P  1 t M M M  1, HM 1t H M 2 t H M 3 t H  T i D T L K  t D M L R  ,P I  TLH t C P t  EXPONtTWW t CPT IP, 
2TGROGt TI3 I t TBO, LAlr lB3A ,T WL t I T M I  hl t I TMA X , N I  P v I MS (41 9 BV ( 4  1 t MV ( 190 1, 
3 1 V (  101I t  1T V (  100t41 t T V (  100 1 4 1  r U T D M V  (100t4)  t B E T A V  (130~ 4 ), 
4 M H l  1 O O t 4 1  t O T U H H ( 1 0 3 , 4 I  t B E T A H ( l O O t 4 )  v K M H ( 1 0 0 t 4 )  t B t H ( l 0 3 t 4 ) .  
5KM( 100)~t3EL1001tUBUM11301t S A L ( 1 0 0 )  t A A A ( 1 0 0 )  

CUMMON / K H O S /  K H L I H B 1 1 0 0 t 4 )  ,RHOVB( l i )O 9 4 )  

CUMMUN / r l d B A A K /  H ( 4 1 , R 1 4 )  v t J ( 4 )  r K A K ( 4 )  r K A ( 4 ) r I H I 4 ) t K L t t ) Z  
I N T E G E R  C3LOATpAANUKtEA SUK t S T K F N  t SLCRD S U R V L s A A T E M P  t S J K F , S U K F B V  

1FI K S T  t UPP ER v UPPK tl V t SL t S T  ,S K U  
K E A L  K .&A& ,LAMBOA ,LMA X ,MH t MLE s MR ,MSA ,MSP t MV, MV I H1 
I H (  S U R F ) = I H (  S U K F J + l  
I H S = I  H( S U R F  I 
H( I ) = A B S I  M V l  I M  I - M H I  1 H S  ,SURF 1 1 
K (  I )=R H3htl( I HS s SURF 
B( I )=t3 tH( I H S  t SURF 1 
K A K L  I )  =BVL S U R F B V )  
K A (  1 1 = 1  
K E T U K N  
t N  I) 

S U B K c l U J I l Y E  SUR 
C 

C SDK S U L V E S  T H E  SET OF S I M U L T A N t O U S  E G U A T I O N S  FOR T H E  S T R E A M  F U N C T I U N  

C U S I N G  T H E  M t T H J U  LIF S U C C E S S I V t  U V E K - R E L A X A T I O N  
C 

CDHPlJN / A U K K H O /  A ( Z O U 0 1 4 1  t U ( 2 O U O )  t K ( 2 0 0 0 )  , K H U ( 2 0 0 3  1 
CdMPldN / I NP / GAM P A R9 T I P t R H U I  P t WTFL t W TF L S P  9 OMEL A ,U K F  t BET A I p BETAU, 

1MI31, M d U t  M B  12 , M B U Z t # M t  N d t l l  t NB L vNKSP q M R ( 5 0 )  t RMSP 150) t BES P(  53 1 v 

2 B L  OAT p AAI\ L)Kt ER SUR, S T R F N  ,S L C K U  9 I N T V L t  S U R V L  
CUMMON / C A L C O N /  MB IM 1 t M B I P 1  sMtiLIM1 t M b O P 1  r M B 1 2 M l  9 M B l Z P l  t MM02M1, 

1MeOZP 1 t M M M l t  H M l t H M Z , t i M 3 t r l T t D T L K  ,DMLK . P I T C H  t C P v E X P O N t T H W  t C P T  I P ,  
2 T b R U G t  181 t Tt lO,LAMB0A t T W L t I  T M I N  , I  TMAX , N I P P I  MS( '+ )  t t l V  ( 4 )  ,MV (103  I t  

3 I V l  101 I , I T V (  1 0 U t 4 1 r T V ( 1 0 0 , 4 I  t D T D M V ( 1 0 0 , 4 1  , B E T A V ( 1 3 0 , 4 1 ,  
4MH( 1 0 0 , 4 ) t U T D M H ( 1 0 U t 4 1  r B t T A h  (100.4) v K M H ( l S b ~ 4 lt B E H ( l 3 ? , 4 ) .  
5KM ( 100 I t  d t l 1 0 0  I t UBUM( 100)t SA 1.L 1UOI t A A A  (1001 

I N T E G E K  ~ L D A T P A A N D K ~ ~ R S U K ,S T K F N v  S L C R O t S U K V L , A A T E M P v S J R F t S U R F E N ,  
1 F C R S T v  W P E K t  U t ' P K B V t S l v S T t S R W  

R E A L  K t K A K  t L A M B U A  L M A X  ,MH t #LE 9 MR t M S L  t M S P  MV 9 MV 1M1 
AATEMP = A A I U K  
I F  lu&&.GE.L . )  I IKF=O. 
I F  (UKF.eT.1.)  GU TU L O  
UKF = 1. 
U K F U P T =  L .  

10 dKt -TEM =URFUP T 
L M A X  = 0. 

20 I F  I A A l E P l P . b T . 0 )  WKITE ( 6 t l U l O  
E n w K  = 0. 

C 
c SOLVE MATRIX EJUATILIN B Y  SOK, un C A L C U L A T E  O P T I M U M  W E R K E L A X A T  I O N  
C F A C T i l K  
C 

I P  = 0 
00 1 U U  I M = l , M M  
I P U  = I V (  I M )  
I P L  = 1V( I M + L ) - l  
I T  = I T V (  I M t l )  
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1 P 1  = I P - 1  
1 P 2  = I P + 1  

C CORRECT I P 1  ANU I P 2  ALONG P E R I U O I C  B U U N O A R I E S  
I F (  1 M . G E . M B I  .AND.IM.LE.MBOZ.ANO. ~IM.LE.HBO.OR.IM.GE.MBI2))GO T O  33 
I F (  I T  .�U. I T V l  I M . 1 )  .OR. IT.Ecl.1 T V ( I M t 3 )  1 I P 1  = I P l + N I j B I  
I F (  I T  . E O .  I T V (  I M t  2 )  .OR. I T.EU. I T V (  1 M  t4 )  ) I P 2  = I P 2 - N B B I  

30 I T 3  = I T  
I T 4  = I T  

C CORKECT 1 7 3  AND I T 4  ALONG L I N E S  C - 0  AND K - L  
I F (  I M . N E . M B J P l I  GO TO 40 
I F (  I T . L T . I T V L I M - l t 1 ) )  I T 3  = I T t N B B I  

40 I F (  IM.NE.MBO I GO T i l  70  
I F (  MB I i M B O  ) 5 0 t 5 0 t 6 0  

5 0  I F (  I T . G t - I T V ( I M r 3 ) )  I T 4  = I T - N B B I  
GO TU 70 

60 I F  L I T . b T . I T V ( I M t A t 4 ) )  I T 4  = I T - N B B I  
7 0  1P3 = I P F (  i H - l t I T 3 )  

1 P 4  = I P F (  I M + l t I T 4 )  
I f  (ORf.GT.1.)  GO TO BO 

C C A L C U L A T E  NEW t S T I M A T E  F U K  L M A X  
UN EW = A ( I P  t 11 * U t  1 P  1) *A ( I P t 2 1 * U ( 1PP ) +A  ( I P e 3  1 *U ( I P3 1 +A ( I P t 4 1 *U ( I P 4 )  
I F  I U N t W . L T . 1 . E - 2 5 )  U ( I P )  = 0. 
IF  (UL I P ) . E O . O . )  GO TO 90 
K A T  IO = UNEW /U( I P  1 
L H  AX= AMAX It KA TILJ 9 LMA X I 

U t  1 P 1  = U N t W  

GO TO SO 


L 	 C A L C U L A T E  qEW E S T I M A T E  F O R  STREAM F U N C T I U N  BY SUR 
B O  CHANGE = O R F * ( K (  I P ) - U ( I P ) + A ( I P t l ) * U ( I P L ) + A  I P . 2 )  *U ( I P 2  ) + A (  I P t 3  ) * 

AU( I P 3 ) + A (  [ P t 4 ) * U l I P 4 )  I 
E K K O K =  AM A X 1  (kRROK , A B S ( C H A N G E )  ) 
U (  I P )  = U (  1P ) + C H A N L t  

90 I F ( A A T E M P . L t . 0 )  GO TO 1UO 
W R I T t  (6. 1030) ITt1P,1PltIP2tIP3tIP4t~A(IP

100 I T  = I T t L  
AATEMP = 0 
IF(LMF.CT.1 .1  GU TO 111) 
U K F U P  T =  2 ./( 1. +SLIKT (At3 S (  l . -LMA X) 1 )  

W R I T E (  6. 1040 ) U K F O P T  

1F( UK F TEW-UK Fir P T .G T 0000 1. OR. ORFUP T. G T. 1 99Y ) G U T 0 10 

HK I T E  (6, 1000) 

O K F  = C K F U P T  

W TU 2 0  


110 	 I f (  EKSUR.GT.0) W K I T E I b t 1 0 5 0 )  ERROR 
I F (  ERROR-GT.  . 0 O O l ) O l )  G O  TO 2 0  
It(S T R f N . L t . 0 )  K E T U R N  

C 
C P R I N T  STI IEAM F U N L T I U N  V A L U E S  t U R  T H I S  I T E R A T I O N  
C 

WR 1 T t  4 bt 1060) 
H 8 I T  = M I N01M6U t HB I LM 1 ) 

UJ 120 I M  = l t M M I T  

I P U  = I V (  I M )  

I P L  = 1V( I M t 1 ) - 1  

I T V U  = I T V ( I M t 1 )  


W R I T E  ( 6 t 1 0 2 0 )  I M t I T V U  
120 W R I T E  (6,1070) L U ( I P ) t I P = I P U t I P L )  

I F ( M B I 2 . G T . H B O )  GU TO 140 
W 130 l M = M d I Z t H B U  
I P U  = I V (  I M )  
I P L  = I V (  I M ) + I T V ( I M t 4 1 - I T V ( I M t l )  
I T V U  = i T V (  I M t  A )  

W R I T E  (6,1020) I M t I T V U  
W H I T E  ( 6 9  1070) ( U t  I P )  t I P = I P U t I P L )  
I P U  = I P L + 1  
I P L  = 1V( I M + l ) - l  
I f (  I P U . G T . I P L )  GO TO 130 
I T V U  = I T V (  I M t  3) 

W R I T E  (6, 1020) I M t I T V U  
v l R I T E  1 6 1 1 0 7 G )  ( U t  I P ) r I P = i P U t I P L )

130 C O N T I N U E  
140 DO 150 I M = M d O P l , M H  

I P U  = 1V( IH) 

I P L  = 1V( 1 M t 1 ) - 1  
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I T V U  = I T V ( I M t 3 )  
W R I T E  (6, 1 U L O )  I M t  I T V U  

150 W A I T E  16t1070J ( U ( I P ) r I P = I P U t I P L )  
K E T U K N  

1000 FOKMAT ( 1 H l )  
1010 FOKMAT ( 8 2 H l  I T  I P  1 P l  I P 2  I P 3  I P 4  A l l )  A( 2 )  

1 A I  3 )  A (  4) K 1  
1020 F U R M A T f S H  I N  = t 1 4 t 6 X t b H I T l  = 114) 
1030 F O k M A T ( l X ,  1 4 t 5 1 6 t 5 F 1 0 . 5 1  
1040 F U K H A T ( 2 4 H  E S T I M A T E D  O P T I M U M  O K F  =tF9.6) 
1050 F U R M A T ( 8 H  ERHUK =tF 11.8) 
1060 FORMAT[  1 H l ~ l O X t 2 2 H S T ~ E A MF U N C T I O N  V A L U E S )  
A070 F O K H A T  ( 2 X t l O F 1 3 . 8 )  

EN D 

S U B K U U T I N E  S L A X  
C 
C S L A X  C A L L S  h U B K U U T I N E S  TO C A L C U L A T E  RHO*W-SUB-M T H R W G H U U T  T H E  R E G I O N  
L Ahto  i)N T H E  b L A D E  S U X F A C E S t  A N 0  TO C A L C U L A T E  AND P L O T  T H E  
C S T R E A M L I N E  L d C A T I U N S  
C 

CJHMON / A U K K H U /  A ( 2 0 0 0 ~ 4 )t U ( 2 O O G )  r K ( L 0 0 0 )  t R h O ( 2 3 0 3  I 
CUMMON / I N P /  GAM p AK , T I P  t R t 4 U I  P ,WTF L t WTF L S P t  OMEGA, UKkr B k T A I t  B E T A 0 9  

L M B I t  MdU, Y B  12 pMBO2 tMMt  N B B I  N B L  *NU SP t MU ( 50) r RMSP (50)s BES P[ 53 I t 

2 B L D A T t  AANDK, ERSUK, STilFlV t S L C K O  t I N T V L t  S U R V L  
COMMON / G A L C O N /  NLi It4 1, M B I  P 1  t M B i l M 1  t M B O P l  t M B I 2  M l  t M B I 2  P 1  t M 0 0 2 M 1  t 

1 H B U 2 P  l t M M l Y l t  H M l 1 H M 2 t H M 3 t ~ T t O T L R t D M L Kt P I T C N  t C P t  E X P U N t T d N t t P T  I P ,  

2 T G K U b t  Tb I 9 T B i J t L A M b U A  t T W L  t I T M I  N t I TMAX v N IP V IMS ( 4  1 t BV ( 4  ) 9 MV( 100 ) 9 


3 I V L  1 0 1 I t I T V (  1 U O t 4 )  p T V ( 1 0 0 t 4 )  , D T D M V ( l O O , 4 l  t B E T A V ( 1 3 0 t 4 ) t  

4MH( 100t 4 t DT LMH ( 1bOt 4) t B  E TAH I 100 t4 1 ,KMH (10014) r 8EH ( 13 3 t 4 t 


5KM ( 100 I t  d E l  100J tDE3UH ( 100 J t S A L  ( 100) t A A A  (100 I 

CL)MMUN / S L A /  T S L ( 8 O O l  t U I N T ( 8 )  

U I M E N S I U N  M S L ( 1 0 0 ) , K K K L 1 8 ) t P ( 4 )  

L iAMENSlUN W (  2 0 0 0 ) , R W M ( 2 0 0 0 )  t B E T A ( 2 0 0 0 )  t W M D ( l J O t 4 )  t W T B ( 1 3 3 t 4 ) r  


l X O O * N (  800)tYACI(USL 8001 
L P U I V A L E N C t  ( A (  l t l ) t H (  i l l  t ( A t 1  9 2 1  ~ i i r l M ( 1 )I t  ( A t 1  t 3 )  p B E T A ( 1 )  ) t  

1(A (  1. 4 ) t MMd ( 1 )  t I A I 401 r 4 I  9 H i t )  ( 1) 1 t LA (801  14 1 1x0OWN( 1)I t 

2 ( K I  1)t YACKOS(  1) ) 
I N T E  tiE& BL DA T 9 AANDK IE X  SOH t S T R F  N t SLCRO t S U R V L t  A A T E M P  ,SURF ,SURF BV t 

1f I K S T t  U P P E K t  U P P R d V t  S l t  S T t  SRW 
H E A L  U t K A K  , L A M B U A , L M A X t M H  t MLE t MR r M S L  r M S P t  M V t  M V I  M 1  
D A T A  ( K K k L  J ) t J = 4 t 1 8 r l )  / W l H * /

C 

C C A L L  S L A V P  A N U  S L A V 6 8  THKUUGHOUT THE K E G I O N  
C 

I T V U =  1 T V i  It 1) 
I T V L =  I T V I  112)  
O i l  10 I M = l t M b I M l  

10 C A L L  S L A V P t I M , I T V U , I T V L )  
MBO T =  M I NO (  M tKJ ,MB I 2 M 1 )  
I F  ( M d I . G T . M B J T )  GO TU 30 
00 20 I M = M B I t M B U T  
I =  0 

20 C A L L  S L A V B B L  I N , 1 , 2 t l t l  1 
30 	I F  (MBUt' l .GT.MBI2H1) GO TO 50 

I T V U =  I T V ( M B U P l t 3 )  
I T V L =  I T V ( H B U P l t 4 )
DO 40 I M = M d i l P 1 t M B I L M l  

40 C A L L  S L A V P I I M ,  I T V U t I T V L )  
50 It- I M B I 2 . G T . M B J I  GU TU 70 

00 60 I M = M d I Z t M B O  
I =  0 
C A L L  S L A V B B (  I M ~ l t 4 ~ 1 t l  

60 L A L L  S L A V B B t  IN,3,2t4,I J 
70 M BO T= MAXOL M BOP 1 MB I 2 

I F  (MBUT.GT.MBO2) GO T U  YU 
DO 80 IM= MdOT,ML\OZ 
I =  0 
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80 C A L L  S L A V U B t  It4 s 3~4.3,  I ) 
90 I T V U =  I T V (  M b O 2 P l r 3 )  

I T V L  = I T V  ( MBO 2P 1,41 
DO L U O  I H = M B O 2 P l , M H  

100 C A L L  S L A V P ( I M r I T V U , I T V L )
C 
C P L O T  STKEPML I N E S  
C 

IF  (SLCKD.LE.0)  K � T U K N  
DO 110 I M = l r M M  

110 MSL(  I M  1 = M V ( I M )  
K K K (  1) = 7 
K K K ( 2 )  = 8 
K K K ( 3 )  = MM 
P ( 1 )  = 1. 
P ( 3 t  = 0. 
P ( 4 )  = 0. 
W R I T E (  6,1000 1 
C A L L  P L O T M Y I  M S L r T S L r K K K r P )  
W K I T E (  tr1010 ) 
R E T U R N  

1000 FURMAT ( Z W T  r > O X , 1 6 H S T K � A M L I N E  P L O T S  
1010 FORMAT ( 2 H P L  r 4 0 X , 7 O H S T K E A M L I N E S  ARE P L O T T t D  W I T H  T H E T A  ACROSS THE 

1 P A G E  AND M UOwN THE P A G E )  
EN U 

S U B R U U T I N E  S L A V  
C 

C S L A V  C A L C b L A T E S  KHIJ+W-SUB-M T H K U G H I J U T  THt R E G I O N  A N 0  ON T H E  B L A D E  

C S U K F A C t S .  AIqU C A L C U L A T E S  T H t  S T R E A M L I N E  L K A T I U N S  

C 


COMMON SR W r I Tiz& ,I END t L E K  ( 2 ) r NE K ( 2 ) 

CLIHI4UN / A U K R H J /  A ( 2 O 0 0 r 4 )  , U ( 2 0 0 0 1  r K ( 2 0 0 0 )  r R H O ( 2 0 3 3 )  

CJMHUN / I N P /  b A M  r A K  r T  I P r R H O I  P r WTFL,WTFLSPrGMEGA, O R F r  B E T A 1 9  B E T A 0 9  


1MB 1, M a O ,  Y B  12 ,MbO2,HH,NL3bI 9 NLJ L r N K S P  1 MR (50)p R M S P ( 5 0 )  P BES P ( 5 3  1 ,  

2 t i L D A T  r AANDKr  EK S U K r  S T & F N  r SLCRO r I N T V L  9 S U K V L  


CbMHdN / C A L L O N /  MI3 I M 1 r  M b I  P i  r M B U M l  t M B O P l  r M B I 2 M 1  r M B 1 2  PA r H B O 2 M 1  v 

1MbU LP A ,MMM 1 9  HM 1, H M 2 r  HM 3, t i  T D T L R  r D M L K  r P I  T C H  rC P, tX PON ,TdW r CPT I Pr  

Z T b K U b ,  T B l  9 TBu.LAMBDA r I WL, 1 T H I N I I  T M A X e N I P  r l  MS ( 4 )  r BV (4), M V ( 1 0 0  1 t 

3 1 V (  101 t , l T V (  l O L r 4 1 r T V ( 1 0 0 , 4 )  r 3 T D M V ( l U 0 , 4 1  , B f T A V ( 1 3 0 , 4 1 ,  

4MH( 1 U 0 , 4 1  ,DTUMH( 1 U O r 4 )  t d E T A H  ( 1 U O p 4 )  , R M H ( 1 0 0 , 4 )  vBtH(133 r 4 ) ~  

%H( 1 0 ~ ) r d t ( 1 ~ 0 ) r D ~ U M ~ 1 0 0 ) 
, S A L ( 1 0 0 )  r A A A ( 1 U O )  

LdMMON / S L A /  T S L l t l U O )  p U I N T 1 8 )  
D I M E N S  IUN TSPL 5 0 1  r U S P  150)  , U U ) T ( 5 0 1  r T I N T ( 8 )  
D l H t N S l U s U  W (  2 ~ 0 O ) , ~ W H l Z O U O ) ~ B E T A l 2 0 ~ 0 t, W H B ( L S O r 4 ) , W T B ( l J 3 , 4 ) 1  

1XDOWNl 6 O O ) r Y A L K O S L  BOO) 
k u U  I V A L E V  CE ( A  ( 111 1 ,  W ( 11 ) 9 ( A  (1r2 1 v RWMI 1) r ( A  (1 r 3  1 r BET A I  1 ) I r 

1 ( A (  1,4),rli'IBl 1) ) , ( A I  401 r 4 )  v W T B ( 1 )  I t  L A ( 8 0 1 9 4 1  rXDObiN( 1 ) 1 9  

2( K ( 1 t YAGKOS ( 1) ) 
C 

C S L A V P  C A L C U L A T E S  ALONL V E R T I C A L  MESH L I N E S  W H I C H  DO NOT 

C I N T E K S t C T  6 L A D t S  

C 


ENTKY S L A V P l  I M , I T V U r I T V L I  
L U C =  0 
11 = 0 
NI= n 
N S P =  I I V L - I T V U + 2  
1P = I V ( I M ) - 1  
DU 10 l T = l i i Y S P  
1P = I P + A  
T S P (  I T )  = F L O A T ( I T + I T V U - l ) * H T  

10 U S P (  I T  t =  U I I P )  
U S P ( N S P I  = U S P ( l ) + l .  
I P  = I V ( 1 M )  
I N T U  = I N T ( U ( I P 1 * 5 . 1  
I f  ( U t  1Pj-GT.U.)  I N T U = I N T U t l  

77 



OU ZU J=195  
U I N T t J )  = F L O A T t I N T U )  

2 0  I N T U  = I N T U + l  
U I N T l  6 )= BVL 4)

30 I F  ( U I N T ( 6 1 . G E . U ( A P ) )  
U I N T t  6 I =  U I N  T (  6 1 + 1 .  
GU TU 30 

40 I F  (U IWT(  6 ) . L E . U ( I P ) +  
U I N T (  6 J= U I N  T (  6 1 - 1 .  
GU ,TU 40 

50 	U I N T t  7 )= U I N T (  1) 
U I N T (  8 )= U I , \ T (  1) 
GU TU 100 

t 


5. 


iXl TO 40 


. I  GO TO 50 


C S L A V B B  C A L C U L A T E S  ALOIVG V E K T I L A L  M E S H L I  N E S  WHICH I N T E R S E C T  BLADES 
C 

ENTRY S L A V B B  ( I M t  UP PER t L O W E K t U P P R B V  , I  1 
I V T E t i E K  O L D A T , A A N D K i t K  SOKt S T K F N ,  SLCRD ,SURVL,AATEMP,SURF,SURFBJ I 

1F I K S T  9 bPP EH 9 UPPKt) V 9 S1, S T  p SRH 
K E A L  K ,KAK ,L AMbOA ILMA X ,MH ,MLE 
L U C =  1 
I T V U P ~  = I~VLIM,UP?E&) 
I T V L H l  = I T V ( I M , L U Y E K )  
I T V U  = I T V U P 1 - 1  
I T V L  = I T V L M l + l  

N S P  = I T V L - l T V U + 1  
T S P ( A )  = r v t  IM,UPPER) 
T S P ( N S ? I  = T V (  AM,LUHEK) 
U S P ( 1 )  = d V ( U P P R B V )  
U S P ( N S P )  = d V ( L 0 W E K )  
1P = I P F (  I N ,  I T V U P 1 ) - 1  

N S P r ( 1  N S P - 1  
I F l Z . G I . N S P M 1 )  GO TU 70  
DU 60 l T = Z , . q S P M l  
I P  = I P + 1  
T S P (  I T )  = F L U A T ~ I T + I T V U - ~ ) * H T  

60 U S P ( i T )  = U( 1 P J  
7 0  I l =  I 

I=  11+1 
U I N T l  I I =  BVL U P P R t j V )  
I N T U  = I i I I T ( U I N T ( 1  )+5.) 
I F  L U I N T l  I I . G t . 0 . )  I N T U = I N T U + l  

80 I = I + 1  
U I N T (  I 1 = I-LUA l (  I N T U )  /5. 
I N T U  = I N T U + l  

MK IMSL, MSP ,MV, MV I M l  

I F  l U I N T (  I ) . L T . C V l L U d E K ) )  t i0 TO 80 
U I N T l I I =  i 3 V l L J w E ; I )  
I F ( L O t 4 E K - U P P E K . N E . 1 )  GU T i l  90 
I = 7  
U I N T (  I )  = B V l 4 )  

90 UINT(B) = t l v ( L u W t K )  
N I =  I- I1 
I F  l N I . E Q . 7 )  N I  = 8 

C 

C FOR BOTH SLAVP AND SLAVtLB, C A L C U L A T E  KHO*k-SUB-M I N  T H E  R E G I O N ,  AND 

C RW*d AT V E t i T I C A L  MESH L I N E  I N T E K S E C T I d h S  ON THE B L A D E  S J R F A C E S  

C 


100 	C A L L  S P L I N E (  T S P , U S P . N S P , ~ W T , A A A )  
F I K S l - =  ( l - L U C ) * I T V U + L U C * I  T V U P l  
L A S T  = ( 1 - L O C  ) * I T V L + L U C *  I T V L M l  
I F ( F I K S T . G T . L A S T J  GO TO 120 
I T  = L U C  

I P U  = IPF(  I M , F I K S T )  

I P L  = I P F (  I M g L A S T )  

051 l l c )  I P = I P U , I P L  

AT = I T + 1  

110 K Y M (  A P )  = U U U T l I T ) + W T F L / B E ( I M ) / R M ( I M )  
120 IF. L L O C . t U . 0 )  GO TU 1 3 0  

k i M B ( I # , U P P E R )  = D U D T (  l J + W T F L / B E ( I M ) / R M ( I M I  

HHB( I M , L J W t K )  = D U D T l N S P I ~ W T I - L / B E ( I M ) / R M ( I M I  

KH DTU 2 = 4 RH ( I M  )*O TO MV ( I H IU P P E R )  )**2 

KM D T L  2 = ( KM I I M )*D TJ M V ( I IY ,LO WE R 1 ) * * Z  

I F  (KMDTUZ. t iT .10000. )  W M B l I M , U P P E K )  = 0. 
I F  ( R M D T L 2 . G T . 1 0 0 0 0 . l  Y n t ) ( I M , L O W E R )  = 0. 



S U k i R U U T I N E  T A N G  

C T A N G  C A L C b L A T t S  R H O I W - S U B - T l i t T A  AND T H k N  R H L ) * W  THROUGHUJT T H E  R E G I O N  

L AND U N  T H t  l 3 L A U k  SUAFAGES, AND L A L G U L A T E S  THE V E L O C I T Y  ANGLE, BETAI 

G THROUGHOUT T H E  K E C ; I U N  

C 

i i l M M U N  SK w ,  I T t K ,  I E N U  , L t R  L 2 )  ,NE& ( 2 )  
CUYMdN /AUKAHLI /  A ( 2 0 U 0 ~ 4 1, U t 2 0 0 0 1  t K t Z O O 0 1  , R 4 0 ( 2 J O 3 )  
CUMMUN / I N t ' /  L A M  IAK ,T I P, K H O I  P 9 WTFL ,WTF L S P  t UMEG A t  W F ,  BET A I  ,BETAi l .  

1Ml3 I s  MtjO,  Y t) 12 ,MUU Z ,MM ,N U B 1  Nt)L NR SP IMR (50I t RMS P (50I t BES P (  53 ) t 
26L OAT ,AAN OK, t K  SUK, S T K F N  ,SLCRO I N T V L  9 S U R V L  


CUMHUN / L A L C U N /  Md I N 19 MB I P 1  r M t ) U M l  P M B O P l  9 ME12 M 1  t H B I 2 P l  v M B 0 2 M l  t 

lMdO 2P 1 VMAM 1 9  HM 19 HM L ,HN 3 H T 11) T L K  ,UMLK ,P I  TCH , C  PI EX PUNrTLd W 9 CPT I P, 

2TGHU6,  It31 ,TBO, LAMBDA ,TWL , I  T M I  N t I  TMAX , N I P  , I  MS (4 ) ,BV ( 4  I 9 MV ( 100 1 v 


3 I V (  101), I T V (  1 0 0 , 4 ) , T V ( 1 0 0 , 4 )  , O T D M V ( 1 3 0 , 4 )  r B t T A V ( 1 3 0 , 4 1 e  

4M H (  100 I4 ) ,D TUMH ( 1UO ,4 p i 3  t TAH 4 100 9 4  9 KMH 113 0 9 4 ) 1 B E H  ( 103 I 4 I p 


5RY ( 1UU ,H E ( L O U  j 9UBDM ( 1UO) ,SAL ( 100) ,AAA (LOOJ 

U I M t N b  1134 SPML 100)t U S P  [ l O O I  , O U O M ( l U O ) 

DIM ENS 101 3( 2000) r K  WM( 2000) ,BE TA ( 2 0 0 0 1  ,WMB (133 ,4 1 ,WT B (  133 v 4 )  9 


lXDLIYN(  d O J I v Y A C R U S (  800) 

kdU I V A L E ' 4 C E  ( A  1 1,li W ( 1) I ,(A (1 12 I v R W H ( 1  I 1 v ( A l l  r 3  I * t ) E T A (  1I ) , 


1 ( A l  1, 4 ) , v l f l B l  11 ) * ( A  ( 4 0 1  14)r r l T & l L I  1 t l A ( 8 0 1 1 4 )  r X D O W N ( 1 ) )  9 

2 ( K (  l ) ~ Y A C K U b ( l I l  
I N T E b t K  t )LdAT,AANUK,  t K  SUK, S T K F N  9 SLCRD 9 S U R V L s A A T E M P  9 S J K F  ,SUKFBV P 

L F  IK S T  UPP ER t UPP'KB V t SL s ST 9 SH ri 
R E A L  K SKAK tL AMt\OA,LMA X r M H  t M L t  ,MR sMSL SMSPsMV, MV I M1 
L J G I C A L  A D U  ,ADO 
E X T t K N P L  B L 1  , d L 2 , 6 L 3 r t 3 L 4  

C 

C PEKFOKM L A L L U L A T I U N S  A L O N L  ONE H O R I  L O N T A L  L I N E  A T  A T LME 

C 

I T  = l T M 1 N  
10 If- ( 1 T . G T . I T M A X I  R E T U R N  

AOOL = .FALSE. 
A D D  = .FALSE. 
IT I = I T  
s 1  = 0 

c 
C ON T H E  , t i I V t N  H U l i l L O k T A L  M t S H  L I N E ,  F INU A F I R S T  P O I N T  I N  T H E  R E G I O N  
C 

I f (  1T.GE.u.AIVD.IT.LT.NdBI) GO TO 6 U  
IH = M B I M 1  

20 	 I M  = I M + l  
I T V l  = I T V ~ ~ B U I ~ ) - N B B I  
I F ( M l 3 l i . b T . M t ) U )  I T V l  = 1 T V ( M B U P 1  9 3 1  
I F (  IM.EO.MB3.ANO.IT.GE.l T V L - A N D .  I T . L E .  I T V ( M B U , 2 J - N d B I 1  GO T O  230 
I F (  IM.GT.MBO2Pl )  GU T U  200 
W 40 S U R F = l i 3 , 2  
16 ( It4 .tiT .MBO.AND. SURF-EQ. 1) G U  TO 4U 

79 

, 




I1111111D11111111I I 


IF1 S U K F e f U  .3sAND. IM.EQ.HBOP1) I T V I M 1  = I T V I H 1 - N B B I  
I t 1  I T  I .bE. I T V I  IMISURF)  aAND.1 T I .  LT.1 T V I  M1) GO T O  70 

40 C U l v T I N U E  
S U R F  = 1 
IF1 I H  .tCI.MBUP 1.ANU.I T.EQ. I T V ( M b U  9 1  1-1. AND. I T V  I H B U r l  ) - I T V  I M B O r 2  1 

l + N B B I . M . Z )  GD TU 70 
00 50 S U R F = Z r 4 1 2  
I F  I I M  .Lt .ME) IZ.AND.SUKF.EU.4) G U  TU 50 
I F  I I T . L E . I T V I I M ~ S U R f ) . A N D . I T . G T . I  T V ( I M - 1 , S U R t ) )  GO T U  70 

50 C U N T I I U L E  
Go TO io 

C 
C F I R S T  P O I N T  15 ON UOUNUARY A - N  
C 

60 	I M l =  1 
I M  = 1 
S P H I  1 )  = M V I  1) 
USP ( 1 1  = U ( I T + l )  
GU TU EO 

C 
C F I R S T  PUlNT I S  ON A B L A D E  SURFACE 
C 

70 5 1  = SURF 
I T 1  = I T  
A D D  = .FALSE. 
I F  I A D D L  .ANU.SleEQ.3) ADD = TRUE. 
I F  I A L J O )  I T I = i T - N B B I  
I M 1  = I M - 1  
I M 2  = 1M 
TH = f L O A T I I T I ) * H T  
I F I S1.EU -3.A;UD. 1M 1. L T .HBU) T H  = TH-F L O A T  I h B B  1) *HT 
M V I M l  = M V I I H 1 )  
I f  I ( I N  . tU . M B I P  1.AND. ( SUKF.E(J .  1 .OK. SURF a E 0 . 2 )  1 OR. I IM.EQ.MBIZP1 

1.AND. L SUAF .EQ. 3.0k. SUdF . t U .  4)I 1 M V I  M l = H V I  M1+ I MV ( I M 2  1-MV I M l ) /  1330. 
L E R I 2 I = i O  

C BLCD ( V I A  R U U T I  C A L L  NU. 1 0  
I F  I S l . E ~ . 1 . A I \ 1 0 . I M l . N E . M B U )  C A L L  R U O T ( M V I M 1  r H V  ( I M 2  I r T H r B L 1 r D T L R r  

1AN S r  AA A ) 
L E K (  2 )  =1A 

C B L C D  ( k 1 A  R D O T J  C A L L  NU. 11 
I F  ( 3 l . t ~ - 3 . A N U . I H l . N E . M B U ~ )  G A L  ROUT I M V I  M1 r HVL I M 2  1 r T H r  BL31 D T L R i  

1 A N S r  A A A )  
L E K ( L ) = l L  

C B L C D  I V I A  K J U T )  C A L L  NU. 12 
I F  I S l . E U . 2 )  C A L L  K O D T ( M V I M l r M V 1  M2 1 rTH rBL2 r D T L R  r ANS r A A A )  
L E A 1  2 ) = 1 3  

c 	 B L L D  ( V I A  K J U T )  C A L L  NU. 1 3  
I F 1  S1 .EO. 4) C A L L  RUDT I M V I M l  9 H V I  I H2 1 r T H  rBL4 r D T L R r A N S r  A A A )  
I E I  Sl.EO. 1.ANO. IMl.EQ.MaU) A N S  = H V I M B O I  
I f  I S1. EQ .3 .ANU. I M  1.EQ .MBU2) A N S  = MV I MBU2 
S P M I  IM 1)  = AluS 
t J S i - ' I l M l ) =  B V ( S 1 )  

C 

C M O V E  ALUNL; I l U R I L U l v T A L  M t S H  L I N E  U N T I L  MESH L I N E  I N T E R S E C T S  BOUNDARY 

C 

80  I T i =  I 1  
90 I T V Z  = i T V ( M U 0 r 3 )  

I F  I M B I 2 . G T . M 8 U J  I T V 2  = I T V 1 M B U P l r 3 ) + N B B I  

I f  I I M  .kd .NOUP 1.AlvD. I T.GE. I T V 2  .AND. I T. LE. ITV ( H B U p 2  1 ) A D D = .  TRUE. 

I F  I A U C )  A W L  = .TRUt.  

I F  I A D E )  I T I = I T - N B U I  

IF  I ADC.ANU. Sl.EO.3) USP ( I M 1 )  = B V ( S l ) + l .  

I F  ( I M . L T . M 8 I . U R . I M . ~ T . M ~ U 2 )  G O  TU 120 

DU 100 b U R F = l r 3 r Z  

I F  ( I M . L t . M J I Z . A N U . S U K F . ~ y . 3 )  GU T O  100 

I t  ( 1 M  .Ed .IML.AlUD.Sl.EU.4.AND. SUKF.EQ.31 G U  T O  1 0 3  

I T V I M 1  = I T V L I M - 1 r S U I F )  

I F  I I M  .Ed .MBc)P 1.AND.ADU I I T V I M l  = I T V I  M 1 - N B B I  

I F  I I T I .L T I TV I 1M r SUdF ) 4 NU I T I  L t  I T V I  M1 I G O  T O 140 

100 	C O l v T I i J U E  
SUKF = 3 
IC.( I # .  Ed . M B I  Z-AND. I T.Ed I T V I  MB 12 13 )-1 AND. I T V (  MI312 13 ) - I T V  I H B I 2  r 4 1 
.EO.2) GJ TO 140 
UU 110 S U K F = 2 r 4 r 1  

ao 



I F  ( IM. [ .T . I . IUO.ANO.SURF.EG.Z)  GO TO 110 125 

I F  ( IM.EQ. IW2.ANU.S l . tQ.  3.1NO.SURF.EQ-4) GO T O  110 126 

I T V I M 1  = I T V ( I Y - 1 . S U R F J  127 

I F  ( I M . E Q . H G I ~ P I . A ~ D . A D 0 )  I T V l M l  = I T V I M 1 - N B R I  128 

I F  ( I T  I .t i l .  I T V  I I M 9 S U R F  1 .  ANO. I T  I .  L E .  I T V I  M 1 ) GO TO 140 129 


110 C O N T I N U E  130 

120 S P M I I M I  = t ' V ( I M )  131 


I P  = I P F ( I P t I T I )  132 180 

U S P ( 1 M I  = I I I I P )  133 

I F  ( 4 0 I ) l  U S P ( 1 M )  = U S P ( I M ) + l .  134 

I F  (IM.Efl .*IM) GO T O  1 3 0  135 

I M =  I M + 1  136 

GO TO 90 137 


C 138 

C i - I Y A L  P O I N T  I S  O H  EOUNOARY ti-H 139 

C 140 


130 I M T  = MM 141 

GO I O  150 142 


C 143 

C F I N A L  V O I I I T  I S  I l l 4  A G L A D E  S U R F A C E  144 

C 145 


140 S T  = S U R F 
~ 	 . .~ 146 

I M T = I M  147 

I M T # 1 =  IMT-1 148 

T H  = F L f l A T I I T I l * H T  149 

I F  ( S T . E Q . 3 . A N O . I M T . L t . M B O )  T H  = T H - F L O A T ( N 8 6 1  l +HT 150 

WI*I = M V ~ I P , T Y ~ I  1 5 1  

I F  ( ( I M T M l . E C . P U I I . A N C . ( S T . E O . I . O R . S T . E Q . Z ) ~  152 


1 M V I M l  = M V I M l + ( M V (  I P T I - M V I M l ) / l O O O ~  153 

I F ( ( I M TM 1. tP.M 0  I 2 I .  A N  0. ( S 1. EQ . 3 .  OR. S T  - EQ. 4 -AND.  154 


155 
1 ~ I T V ~ M ~ I 2 ~ 3 l - I T V ~ N @ I 2 . 4 ) . F O ~ L . O R . I T V ~ M 0 l 2 ~ 4 l - I T V ~ M ~ l 2 ~ 3 ~ ~ E Q ~  
2 Y B L ( 1 - 2 1 1  M V I M l  = M V I M l + I M V ~ I h T l - M V I M l ) / 1 0 0 0 ~  156 


L t R  ( 2 1 = 1 4  157 

0 L C O  ( V I A  9UOTl C A L L  NO. 1 4  158 

I F ( ~ T . F O . l . A Y U . I M T . Y F - ~ B I I C A L L  K O O T ( M V I M l . M V ( I M T ) i T H ~ ~ L l ~  159 


l D T L . ( r A N S ,  A P A I  160 2 14 

LER ( 2 )= 1 5  161 

H L C G  ( V I A  ? L i ( l T I  C A L L  NO. 1 5  162 

I F ( I T . F 0 . 3 . A N ~ . I M T . N E . r D I 2 ) C n C L  R O U T ( M V I N l r M V ( I M T l . T H . H L 3 1  163 


1	O T L Q ,  A r l S  9 A AA 1 164 2 18 

L E R  ( 2 1= I 6  165 

BLCIJ ( V I A  R U f l T I  C A L L  NO. 16 166 


I F ( S T . E O . 2 1 C A L L  R 0 f l T ( M V I M l l M V ~ I M T ) ~ T ~ l ~ 6 L 2 ~ D T L R ~ A N S ~ A A A l  167 222 

L E K (  2 1  = 1 7  168 

B L C O  ( V I A  P U U T I  C A L L  Nfl. 1 7  169 

I F ( S T . C Q . 4 1 C A L L  R U f l T I M V I M 1 . M V l I M T 1 ~ T H ~ 0 L 4 , O T L K I A N S . A n A )  170 226 

I F (  rT.FP.l.~N~.IMT.Efl.M61) ANS = M V ( M 6 I J  1 7 1  


I F ( ~ T . F 8 . 3 . A ! ~ ~ . l H T . E Q . M B I Z )  A N S  = M V l M B I Z l  172  

S P M I I M T I  = A N 5  173 

U S P ( I M T l =  O V ( S T 1  174 

I F ( S T . F U . 3 . , ~ N D . l r T . L E . M B U )  U S P ( 1 M T )  = B V ( 4 )  175  


I F ( \ f ) D I  l ISP(Ir ' ,T l  = U S P ( I f A T l + l .  176 

I F  ( S l . F Q . 3 . A N D . S T . E O . 2 1  U S P ( I M 1 )  = R V ( S l l + I .  177 

I F  IS 1 .  FO. 5 .  PND.ST .EO. 3 1  U S P  ( I M 1 )  = 0 V (  S1 )+l. 178 


179 

C Z L C U L A T E  R H f l + k - 5 U b - T H f T P  A h 0  T H E N  RHO*W A N D  b E T A  I N  T H E  R E t i I O N  	 160 


1 8 1  

102 

183 2 5 8  

104 


I F  ( I M l . N E . 1 1  F I R S T = I P 2  105 


L A S T =  MN 186 

I F  ( I M T . N t . M M I  L A S T = I P T M l  167 

I F  ( F I R S T . G T . L A S T 1  GO T O  170 188 

I T 1  = I T  109 

I F  ( F I R S T . G T . M H O P l . A Y D . A I , O )  I T I = I T - N B B I  190 

DO 160 I = F I f i S T , L A S T  191 

I F  (ADO.ANl l .1  . E l J . M O O P l  ) I T I = I T - N R B I  192 

RWT = - U U O P ( I I + W T F L / 0 E ( I )  193 

I P  = I P F ( I I I T I I  194 279 

C I I P )  = S O R T ( K W T + + Z + R h b ' (  I P I + + 2 1  195 283 


160 f l E T " ( I P 1  = A T A N 2 1 R W T I R W M ( I P ) I * 5 7 . i 9 5 7 7 9  196 

t. 197 

C C A L C U L , \ T E  R H O I W  ClEl THE 6 L A O t  S U R F A C E S  198 

C 199 2 86 


170 	 I F  I I M l . � Q . I )  GU T O  180 200 

CALI .  S E A R C H  ( S P M ( I M 1 l . S l . I H S )  2 0 1  295 

ANS = - D U O ~ l I M l ) + W T F L / 8 E H (  I H S t S 1 )  202 


203 301 
h T H I I H S . S I l  = A ~ S ~ A Y S ~ ~ S ~ R T ~ 1 . + 1 . / ( R H H ~ l H S , S l I + 0 T D M H I I H S ~ S l ~ ~ * + 2 I  

100 I F ( I M T . E Q . P M 1  GO Tfl  200 204 


CALI. S E A R C H  ( S P H ( I M T I . S T . I H 5 )  2 05 307 

ANS = - U U O V (  I M T ) * W T F L / B E h (  I H S S S T I  206 


207 313
W T d I I H S , S T I  = A L ~ S ( A N S I + S P R T ~ ~ . + ~ . / ( R M H ~ I H S . S T I ~ U T O M H ( I H S ~ S T ) ) * * ~ I  

190 GO 10 2 0  208 

200 I T  = I T + l  209 


GO T O  IO 2 10 

END 211 
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SUBROUTINE SEARCH (OIST,SURF S I S I  
C 
C SEPRCH L O C A T � S  THE P O S I T I O N  OF A G I V E N  VALUE OF M I N  THE MH ARRAY 
C 

COMMON /C ALCON / MB I M l  ,c1B I P 1  ,MBOMl s MBOPl  g M B I 2  M l  p M B I 2  P 1  t MBOZMl , 
1MtlO2P 1sMMM 1, H M l  ,HM2,HM3,H TID TLR rOMLH ,PITCH ,C P, EX PONSTdW p CPT I P t  
ZTGROG, T B I  rTB0,LAMBOA , T W L t I  TM1 N,I TMAXINIPII W ( 4  p B V ( 4 J i M V I  100 ) *  
3 I V i  1 0 1 ) , I T V (  1 0 0 ~ 4 1 , T V ( 1 0 0 , 4 )  ,OTOMVL100,4) t B E T A V i 1 3 O t 4 ) ,  
4 M H (  100I4) IOTOMH( 10014) ,BETAH (100~ 4 1,RMH (100 1 4 )  s BEH ( 100 v 4) q 

5RM( 1 0 0 ~ ~ B E ~ 1 0 0 ~ ~ O B O M ( 1 0 O ~ ~ S A L ( l O ~ ~* A A A ( 1 0 0 )  
INTEGER BLOAT, AANOKtEK SOR. STKFN, SLCRD ,SURVL,AATEHP,SURF,SURFBV 9 

1 F I R S T .  UPPER, UPPRBVsS1,STsSRW 
REAL K ,KAK ,LAMBOA ,LMA XtMH t MLE ,MU ,MSL ,MSPtMV, M V I  M l  
00 10 I=1,100 
I F  ~ABS~MH~I,SURF)-DIST).GT.OHLR) GO T O  10 
IS = I 
RETURN 

10 	CONTINUE 
W R I T E  (6,1000) O I S T s S U R F  
STOP 

1000 FORMAT ( 3 8 H L  SEARCH CANNOT F I N O  M I N  THE MH ARRAY/7H O I S T  =tG14.6, 
11OX 6HSUR F = ,G 14-61 

EN0 

SUtiKU U T I N  E VELOC Y 
L 
C VELOCY C A L L S  SUBKUUTINES TO CALCULATE O E N S I T I E S  A N 0  V E L O C I T I E S  

C THROUGHOUT THE REGION AN2 ON THE BLAOk SURFACES, AND I T  PLOTS 

C TI -�  SURFACE V E L O C I T I E S  

C 


CUMMON /AUKRHO/ A ( Z O 0 0 1 4 )  1 U ( 2 0 0 0 )  t K ( 2 0 0 0 t  , R H 0 ( 2 0 0 3 )  
COMMON / I N P /  GAM,ARtTIP t R H O I P  ,WTFL tWTFLSP,OMEGA.ORFs B E T A I ,  BETAOI 

1Mti  I v M B0.M B I2 sMBO 2 ,MM ,NBa It NB L ,NR SP ,MR (50) s RMS P ( 5  0) t BES P(  5 0  9 

2BL OAT t AAN UK ER SOR ,STRF N v SLCRO v I N T V L  9 SURVL 
COMMON /GALCON / MB IM1 t MB I P 1r MI3 O M 1  s Ml3OPl ,MB I 2  H1 t Mt l I  2P 1  s M B 0 2 M l t  

lMBO 2P 1,MM M 1,Hn 1t HM2 ,H M  3 t H T r 0  TLR ,OM LR s P I  TCH tC P, EX PON I TM W 9 CPT I P t  
ZTGRJG, T B I  s TBOtLAMBOA 9 TWL , I  T H I N 9 1  THAX S N I P , I  MS ( 4 1  v BV ( 4 )  r M V ( 1 0 0  1, 
3 I V (  101I t  I T V (  1 0 0 ~ 4 )s T V ( 1 0 0 , 4 1  ,DTOMV(100,4J v B E T A V l 1 3 0  14) t 
4 M H (  100,4) vDTDMHl 10014) ,BETAH (100 r4 t .KMHW(100,4) rBEH 1103941, 
5RMl 100 1, B E l  100)t O B O M (  1001 t SAL (100)  tAAA (100I 

OIMENSION K K K l  1 8 1  
OIMENSION Y( 2 0 0 0 ) , K W M ( 2 0 0 0 )  ,BE T A ( 2 0 0 0 )  ,WMB(lOOv41 e W T B ( l O O t 4 )  I 

lXOOWN( BOO),YACROS( 800)  
E P U I V A L k N C E  ( A ( l , l ) t W l  1) I t ( A ( 1  121 rRWM(1) 1 ,  ( A t 1  ,3)p B E T A ( 1 1  I , 

1 ( A (  l t 4 l r W M B (  11) , L A (  4 0 1 ~ 4 )pWTB(1) ) . l A ( B O l r 4 )  ,XOOWN(l)  , 
2L K l  1) t YACKOSf 1 )  ) 

I N T t G E K  BLUAT,AQNDKsE* SUR i T R F N  t SLCRD 9 SURVLt  AATEMP .SUKF ,SURFBV t 

1 F  IRST,  UPPER, UPPRB V ,  S 1  t S T ,  SRW 
REAL K ,KAK ,LAMBOA.LMbX,MHt MLE t MR ,MSL tMSP .MV,MVI M i  
UATA K K K I  4 I /  1H*/  ,KKK( 6 )  /1HO/ t K K K ( B )  /1H=/ t K K K  (101 / 1 H  ( /  v 

l K K K (  12 ) / l H + / t K K K l  1 4 ) / 1 H X / t K K K (  1 6 1 / l H S /  t K K K ( 1 8  l / l H l /  
C 
C CALL VELPI VkLBB,  AN0 VELSUR THRUUGHOUT THE R E G I O N  
C 

CALL V E L P I  l , H B I M l t 1 , 2 )  
I F  LMB12.GT.MBU) G L ~TO 10 
CALL V E L B B ~ H B I , M B I 2 M l , 1 . 2 )  
CALL VELBB(RBI21MBO t 1t 4) 
CALL VELBB(WB1 2 t M B O t  312) 
CALL V EL BB ( M BOP 1,MI302 t 3 s 4) 
Go TO io 

10 	CALL V ELBB(FIB1 r MBO 1t 2 I 
CALL V ELP ( MBOP 1 t MB I2M l t 3  t 4) 
CALL V EL8 B 4 M B I 2 9 MBO 2 9 3 9 4 1 

20 C A L L  V�LP(MBO2Pl,MM,3,41 
CALL vf isun 

C 
C PREPARE I N P U T  AROAYS FUR PLOT OF V E L O C I T I E S  
C 

I F  ( SUHVL .LE -0) RE TUKN 
N P 2  = 0 

C SURFACES 1 TO 4 - TANGENTIAL C O M P O E N T S  
W 50 SURF=1,4 
N P 1  = NP2 
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I M S S  = I M S I S U R F )  
I F ( I M S S . L T . 1 )  GU TO 40 
UO 30 l H S = l r  I M S S  
I F  ( A B S ( D T U H H (  IHS, SUKF J*RMH ( I H S ,  SURF)  ).LT. .57735 GO T O  30 

N P 1  = N P 1 + 1  
Y ACRO S (NP 11 = M TB L 1H S 9 SURF J 
X D U W N L N P L )  = M H ( I H S , S U K F I  

3 b  C O N T I N U E  
40 K K K ( Z * S U & F + l J  = N P L - N P 2  
50  IYPL = N P l  

C S U K F A C t S  1 AND L - M t R I D I L 1 N A L  L O M P U N E N T S  
DO t lU S U K F = l , L  
N P 1  = N P 2  
I F  ( M B I P l . G T . M B U M 1 )  GU TO 70 
DO 60 i M = M B I P l ~ M B O M l  
I F  ( A B S ( U T D M V L  I M , S U K t ) * K M ( i M l  ) .GT.1 .7321)  60 T O  63 
N P 1  = N P l + l  
Y A C R O S ( N P l 1  = WMB(IM,SURFJ 
X D I I M N l N P l )  = M V L I M )  

60 CLINT I N U E  
70  K K K 1 2 * S U R F + 9 )  = N P 1 - N P 2  
80 N P 2  = i W 1  

C SURFACES 3 AND 4 - M E R I D I O N A L  COMPONENTS 
DU 110 S U R F = 3 , 4  
N P l  = iUP2 
I F I M B I ~ P 1 . G T . M B O Z M 1 1  G d  TO 1 U O  
DO 90 I M = N f 3 1 2 P l ~ M B U 2 M l  
I f  ( A b S ( U T U N V (  IM,SUKFI*RMiIM)l.GT.1.7321) GO T O  9 D  
N P l  = N P l + l  
Y A Z k O S ( N P  11 = WMBI M, SURF 
XUUWiU(iJP1) = M V [ I M  

90 C O N T I N U E  
100 K K K ( Z * S U R F + S )  = N P  -NP 2 
110 N P 2  = N P 1  

C 

C P L O T  V t L U C I T I E S  

C 

K k K ( 1 )  = 1 
K K K ( 2 J  = 8 
P = 5. 
W R I T E (  t t  1000 
L A L L  P L J T t i Y (  XUOWN ,YACRUS,KK&,PJ 
W K I T E ( 6 s l U 1 0 1  
R E T U R N  

1000 F U ~ M A T (2 H P T t  5 0 X , 2 4 H B L A D E  SURFACE V E L O C I  T I  �SI 

1010 FU&MAT ( L H P L  , 3 7 X , 6 3 H V E L U C I  T Y ( W )  VS. M E R l U l O N A L  S T R E A M L I N E  D I S T A N C E  


1 t M I  UOWN TH� P A t i E  / 2 b i P L /  
2 2 H P L s  5CX, 50H+ - B L A D E  SURi-ALE 1, B A S E U  ON M k K I D I  O N A L  COMPONENT/ 
3 2 H P L t 5 C X .  5 0 H *  - B L A D E  SURFACE 1, B A S E D  ON T A N G E N T I A L  LOMPUNENT/  
4 L H P L 9 5 C X s  5 U H X  - B L A O E  SURFACE 2 , b A S E 0  ON M E R I D I O N A L  COMPONENT/ 
5 2 H P L , 5 0 X ,  5 0 H U  - B L A D t  S U R t A C t  2,  B A S E D  ON T A N G E N T I A L  COMPONENT/ 
6 2 H P L  t 5 C X ,  50HS - B L A U t  SURFACE 3, B A S E D  Oh MER1 D I  O N A L  COMPONENT/ 
7 2 H P L , 5 C X 1  5 U H =  - B L A D E  SUKFACE 3, B A S E D  ON T A N G E N T I A L  COMPONENT/ 
8 2 N L  ,50x9 50H J - b L A U E  SUKFACE 4, B A S k D  ON MER1 D I  ONAL COMPONENT/ 
9 2 H P L , 5 C X ,  50H( - B L A D E  SURFACE 4, BASED ON T A N G E N T I A L  COMPONENT) 

EA D 

S U B R O U T I N E  V E L  
C 

C V E L  C A L C U L A T E S  U E N S I T I E S  AND V E L O C I T I E S  F R O M  T H E  PKUOUCT OF 

C D t N b I T Y  T I M t S  V E L J C I T Y  

C 


COMMCJN SR W t  I T t K  9 I t N O  ,LEK LZ 1 sNEK ( 2 )  

COMMON / A U K R H 3 /  A ( 2 0 0 0 1 4 )  r U ( L O U 0 )  s K ( 2 0 0 D )  , K H U ( Z O D J  I 

CUHMUN / I N P /  GAM ,AR , T I ?  , R H O 1  P ,W T t L ,  HTF L S P ,  OMEGA, O K F I B E T A I  ,B E T A O t  


1MM I ,MBU,H 8 12 sHBU2 sMMp NbB I 9 NBL ,NR SP ,MK (501 9 RMS P (50 J ,BES P(  50 1 9 


Z B L U A T ,  AANOK, E R W K s  STRFN, SLCRU s I N T V L t  S U R V L  
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I I I I 1l1111111111111l11111~ll1l111111l11111l111 


CUMMUN / G A L G U N /  M ~ I M 1 , M B I P l , M M O M 1 , M B O P l , M ~ I 2 H l, M t 3 1 Z P l , M B 0 2 M l r  
lMBO 2P 1tMNM 1, HM L t H M L v H H  31 H T 11) T L K  v D M L R  9 P I  TCH t C  P t  t X P O N  ,T W W  t CPT IPI 
ZTLKUG,  r B  I ,  TMU, L A M B J A  I T A L  9 I T H I N  , I  TMA X rNIP , I  HS I 4  1 ,BY ( 41 9 MV ( 1 0 0  I , 
3 1 V (  101)s I T V I  1 0 C , 4 1 , T V I L 0 0 , 4 )  r U T D M V ( 1 0 0 , 4 1  , B E T A V ( 1 3 0 , 4 ) ,  
4MH( 1 0 0 , 4 ) ~ U T U M H I 1 0 0 , 4 1  v B E T A H ( l 0 0 , 4 )  ~ K M t i I 1 0 0 ~ 4 1, B E H ( 1 0 3 , 4 ) ,  
5HH I1UO 1,C%El100),DBDM( 100 1 S A L ( 1 0 0 )  r A A A  (100I 

CLiMMU,lU / R H O S /  R H O H b ( 1 0 0 , 4 )  , K H O V B ( l O O  9 4 )  

U I M E N S I U N  W W L R M I 1 0 0 , 4 )  ~ W W C R T ( 1 0 0 ~ 4 )s S U R F L ( 1 0 0  14)  

UIHENSWN W 1 2 0 0 0 ) , R N H ( Z 0 0 0 ) , O E T A 1 2 0 0 0 1  , W M 8 ( L O D , 4 ) r W T ~ ( 1 ~ 3 , 4 ) ,  
1XOOWNI EO0 ) ,YACHOS( 8 0 0 )  

E Q U I V A L E V C k  ( A (  l t l l , W (  1 ) )* ( A t 1  r Z ) r R W M ( l )  1 v ( A l l  r 3 1  t 6 E T A l l )  1 v 
1( A 1  194 b, WHBI 1) ) t ( A  I401 141 ,WTB I 1) ) t ( A  (80114) 9 XD G d N (  1I j 9 

21K( I l r Y A C R O S I l ) )  
C 

C V E L P  C A L C L L A T E S  ALONG V k R T I C A L  MESH L I N E S  WHICH D O  NUT 

C I N T E R S E C T  B L A D t S  
C 

ENTRY VELP I F  1K ST, L A  ST, UPPER LOWER) 
I N  T E G t R  BLOAT,AANOK,ER SUK ,S T R F N i  SLCKL), S U R V L  ,AA t E M P  ,SU R F 1 S U K F  BJ 

l F I R S T ,  U P P k K , U P P a M Y , S l  ,SJ,SRW 
M E A L  K r K A K r L A W B O A  r L H 4  X i M H  ,MLE ,MR t M S L  t MSP ,MV, HV I H1 
I F  ( F I R S T  . G T  . L A S T )  RE TURN 
I F  ( F IRST .E?. 1.AND I N  JVL .GT. 01 WRI TE (6,1000) 
IF ( F I K S T . E U . 1 )  R E L E K  = .O  
DO LO I M = F I K S T , L A S T  
I P U  = 1V( I M )  
1 P L  = I P U + N B B I - l  
TWLMK = L.*OMELA*LAMBOA- OMEGA*KMl  I M)  1 **2 
L � R (  1)=4 
uu 10 I P = I P U , I P L  

C U E N S I Y  C A L L  NU. 4 
C A L L  DENSTYL W I  1P 1 ,Rr(U( I P  V A N S ,  TWLMR , C P T I  P ,  �XPON,RHUIP,GAMt  A R , T  I P )  

10 W (  I P )  = A N S  
I F  ( l N T V L  .LE -0) GU TU 2 0  

W R I T E  I 6 t 1 0 1 0 )  I M , L W ( I P I  B � T A  f I P 1 t I P = I  PU t I P L )  
20 C O N T I N U E  

R E T U R N  
C 

C V U B B  C A L C U L A T t S  ALONG V t d T I C A L  MESH L I N t S  N H I C H  I N T E R S E C T  BLADES 


ENTRY VELt)B(  F I K S T , L A S T , U P P E K , L O W E K )  
I F  ( F I K S T . G l  . L A S T )  R E T U K N  
I F  I F I R S T . N C . # B I )  GU TO 30 
S U R C L (  Mi31 t 11 = 0. 
S U R F L ( N b I , Z )  = 0. 
S U K F L L N B I 2 , 3 )  = 0. 
S U H F L I M b I 2 , 4 )  = 0. 

30 DO 70 I M = F I K S T , L A S T  
I T V U  = I T V ( I M , U P P k R I  
I T V L  = I T V ( I M , L U W t R I  
I P U P 1  = I P F (  I M , I T V U )  
I P L M l  = I P F (  I M , I T V L )  
TWLMK = Z . * J M k L A * L A M 6 D A - I U M E G A * K M (  I M) 1 +*2 
WCR = S U K T ( T G K U G * T I P * I l . - T W L M R / C P T I P ) )  
I F  L l T V L . L T .  I T V U )  GO TO 50 

C ALONG T H E  L I N E  U E T W E t N  B L A D E S  
L E K 1  1)=5 
UO 40 I P = I P U P l . I P L M l  

C D E l v s r r  CALL NU. s 
C A L L  U E N S  T Y  ( W ( I P  I s RHO( I P  1 ,AN Ss TW LMR t C P T I  P B EX P U N  t RH01P GAM, AR, T I P  1 

40 W1 I P )  = A N S  
I F  II N T V L  .LE .O) GU TO 50 

WR I T t  ( 6,1010 1 I M  7 ( W ( I P I  T A  ( I P )  v I P = I  P U P 1  9 I P L  Ml ) 
C 	 O N  THE U P P k K  SURFACE 

5 0  RHUS = K H U V B (  I M , U P P E h )  
L E R (  ll=6 

C O t N S T Y  C A L L  NU. 6 
C A L L  U � N S r Y ( k M B ( I M r U P P t R )  r k H U V 8 l I N , U P P E R )  sANS,THLMR,CPTIP,  

l E X P O N , K H d I P ,  GAkf ,AR,TIP)
NMB( I M v U P P E R  ) = A N S  
dWCRM( I # , U P P E R )  = W M b ( I H , U P P t K ) / K ; R  
I F  ~ I M ~ t ~ ~ M B i ~ O K ~ ( I H ~ E U ~ ~ ~ l 2 ~ A N D ~ U P P ~ R ~ E 0 . 3 ) ~GO T U  60 

D E L T V  = J V L  IM-l.UPPtK)-TV(IH,UPPER) 
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IF ( IM.~E~.MBOPl.ANO.UPPER.EQ.3) DELTV = OELTV-PITCH 
SURFL( IM,  UPPER J = SUKFLL I M - 1  ,UPPER) + SQRT( (MV ( I M J - M I  ( IH-1I )**2 + 

l ( O E L T V * ( A M (  I M I + R M I  1M-11)  /2.1**21 
60 RELER = AMAXl(RELER,AB S (  (RHOB-RHOVB(1 H,UPPER) J /RHOVB( I MiUPPER)  1 )  

C O N  	THE LOYER SURFACE 
RHO8 = RHOVBt  IM,LOWEKl 
LEK( 1 1=7 

C 	 OENSTY C A L L  NO. 7 
CALL  OEEJSTYtWMB(1MrLOWEK) rRHOVB(1MrLOWER) ~ANSITWLMRICPTIPI 

l E X P U N  t RHO I P S  GAM ,AR s T I P  ) 

w M e l  IM,LOWER) = ANS 

WWCRM( IH,LOWERJ = WMtl ( IM,LOYERI/ ICR 

I F  (IM~E1.HBI.UR.(lM.EQ.HBIZ.AND.LOWER.E4.4)1 GO T O  70 

OELTV = TVL I H- 1,LOYER)-TV( I MrLOYER) 

SURFL( IM, LUWER 1 = SUgFL( I M-1 ,LOWER) + SQRT( L MV( I M I  -HV( I M - 1  I I **2 + 


1(DELTV*(RHL I M )  +RM( I M - 1 ) )  /2.1**2) 

70 	RELER = AMAXl (RELER,ABS(  (RHO8-RHOVB(IM,LOWERl ) /RHOVB( IHrLOWER)  ) 

RETURN 
C 

C VELSUR CALCULATES ALONG A BLADE SURFACE 

C 

ENTRY VkLSUR 
00 90 SuRF=1.4 

IMSS = I M S ( S U R F )  

I F (  IMSS.EQ.0) GO TO 90 

00 80 I H S = l ,  IMSS 

TWLHR = Z . * O H E G A * L A M B U A - ( O H E G A * R ~ ~ I H S  ,SURF) )**2 

W CR = SUR T(  TGROG* T I  PC ( 1. -TWL MK /C P T I  P ) I 

RHUt l  f RHOHB( I H S r S U R F )  
L E R (  1 1 = 8  

C OENSTY C A L L  NO. B 
CALL  DENSTY( WTB ( I H S .  SURF 1 ,KHOHB [ I H  5 SURF) PANS.TWLHRICPTIP~  
1EXPON*RH3IPIGANrAR,TLP) 

Y T B l  IHS,SURF I = A N S  

YHCHT( IHS.SUKF4 = WTB(IHS.SUKF)/CI :R 


80 RELEK = A H A X l ( K E L � R , A B S (  (RHUB-RHCHB 
90 CONTINUE 

I F  (KELER.LT..OGl) l t N D  = I E N D + I  
WR I T E L  6 9  1080 J I T E R  ,RELER 

C 

C WRITE A L L  BLADE SURFACE V E L O C I T I E S  

C 


I F  4 SURVL .LE -01 RETURN 
WRITE(  hr l 0 Z O  I 
WRITE(  t r  1040) (MV( IM) rWMB( l H 1 1 )  ,BE T A V ( I R s 1 )  ,SURFL( I M t l )  r 

lWUCKM( I M r  1) s YMB( I M  r2)9 B E T A V ( 1  M v 2  1 r SURFL( I M r 2  ,WWCRM( I f l p 2  ) , 
ZIM=MB I .MBO J 

WRITE(  6 , 1 0 3 0 )  
WRITE(  t ,  10401 ( M V ( I M )  r W M B ( I M r 3 1  r B E T A V ( l M r 3 1  r S U R F L (  l M . 3 ) ~  

l Y H C H f + (  IM, 3 ) r  WMBt IM ~ 4 )r B E T A V (  IM *4 )  v SURF L (  I M 9 4 l  rWWCRH( IM.4)  r 
21H=MB1ZrMBUZ)  


W R I T � (  6,1050 J 

DU 100 SURF=1.4 

IMSS = I M S ( S U R F )  

I F (  IMSS.LT.11 GO TO 100 

WRITE(  6 ,1060  I SURF 

WR 1 T � (  e, 1070)  (MH(  IHS,  SURF I .YTB( IHS ,SURF1 ,BETAH( I H S  ,SURF) ,  


1WYCRT4 I H S r  SUKFI ,  I H S = l , I H S S I  
100 CUNTLNUE 

RETUKN 
1000 F O R M A T L 1 H 1 / / / / 4 0 X r 3 4 H V E L O C I  T I E S  AT I N T E R I O R  MESH POINTS/ /  
1010 FOKHAT(lHL.3HIM=rI3,5(24H V E L O C I T Y  A N G L E I O E G I ) /  

11 5x9 5 t  G15.4rF9.2))  J 
1020 F U R M A T ( l H 1 / / / / 1 6 X ,  lH* , lBXv49HSURFACE V E L O C I T I E S  B A S E 0  ON MERIDIONA 

1L COMPUNENTS r 4 3 X ,  l H * / 1 6 X , l H *  * 5 3 X g l H *  .56X , lH* /16X  . lH*  t 19x11 5 H B L A O E  
2SURFACE l r  1 9 X p  lH* rZOXg15HBLAOE SURFACE 2 ~ 2 1 X ~ l H * / 7 X . l H M r 8 X ~ l H * ~ 2 ( 3  
3x1 BHVELOC 1TY r 3Xs23HANt iLE  (DEL; I SURF. LENGTH .5Xs5HW/WCR*6X I 1 H * r 3 X  ) 

1030 F U R M A T ( / / / l b X ,  In*, 19Xe15HBLAOE SURFACE 3 r19X. lH* ,ZOXr15HBLAOE SURF 
l A C E  41 2 1 x 1  ~ H * / ~ X P ~ H M , ~ X , L H * , ~(3X18HVELOGI  T Y v 3 X  ,23HANGLE(OEG) SJRF.  
2 L E N G T H , ~ X ~ ~ H W / W C K I ~ X , ~ H * ~ ~ X ) )  

1040 FORMAT(1H ,613.4r3H * ,612.4rF9.2~2615.416H * r G l 2 . 4 r F 9 . 2 r  
12G15.4,3H * 1 

1050 FORMAT( 1H 1 / / / / 3 X s  49HSURFACE VE L O C I  T I  E S  BASED ON T A N G E N T I A L  COHPONE 
l N T S  t 

1060 FORMAT L / / 2 2 X  r 15HBLAUE SURFACE 111/ 7 X  s l  HM rlOX,�IHVELOCITY s 3 X  9 10HANG 
1LE(  OEG )r 3x1 5HW/WCK J 

1070 FUKMAT ( 1H v 2ti13.4,F 9.2rG15.41 
1080 F O R M A T ( 1 4 H L I T E K A T I O N  NO. . 1 3 , 3 X r 3 6 H W X I M U M  R E L A T I V E  CHANGE I N  OENSl  

1TY =,GA1.4) 
EN0 
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S U i j K U U T I N E  B L C D  
C 
C B L C O  C A L L I I L A T E S  B L A D E  T i i t T A  C O U R U I N A T t  A S  A F U N C T I O N  OF H 
C 

CUHMUN S K d r  I TER P I E N O  , L t R  ( 2  I , N E K ( Z l  

COMMUI~ /11' lP/  t iAM ,AK , T I  P S R H U I  P ,W T F L  ,WTf L S P  ,UMEGA,ORF, B E T A 1  t B E T A 0 9  


1MB I ,  MdU, f i t i  12 pMBO2 ,HM, N B d  1 9 Nt)L ,NRSP ,MR 150 I s KMSP (50)v BES P I 5 0  0, 


Z B L D A T ,  AANiJk, ER SOk, S I R ~ N , S L L ~ D 
t I N T V L t  S U R V L  
LOrltilUN / C A L C U N /  M b  I M  1,W I P  1 Mti OM1 t M B U P l  t M B I 2  M l  rMBI2 P1 t M B U Z M l ,  

l M B O  L P  1 ,MVtY 1, HM 1, HM2, H M 3  ,dT SOT L R  rDMLI< , P I T C H  ,CP S E XPUNITWW t CPT IPt 
2TGKiJGp TI31 ,Tt l  U,LAMLIDA, TML t I T M I  N, I TNAX ,i\lI P , I  MS ( 4 1  8 V  ( 4  I 9 HV (100  I t 
3 1 V (  l O l ) r I T V (  l U 0 , 4 1 , T V ( 1 0 0 , 4 1  , D T D M V ( l O 0 , 4 )  , B E T A V ( 1 3 0 , 4 ) ,  
4 M H ( l U O , 4 )  ,UTUMH( 1 O O , 4 l  , d E T A H ( l O Q , 4 )  , R N H ( 1 0 0 , 4 1  , B E H ( 1 0 3  ,4)9 
5 R H (  1 0 0 l , B E (  i L I O l ~ U B O M ( 1 0 0 ), S A L ( i 0 0 )  s A A A I 1 0 0 )  

C d i 4 H U d  / G t U ' l I N /  C H d R J ( 4 ) , S T G R ( 4 )  S M L E I ~ ) , T M L E ( ~ Ir R M I ( 4 )  , K M O I 4 l ,  
1 K 1 1  4) ,KO(  4 1 ~ t l E T 1 ( 4 ) , d E 1 0 ( 4 1  B N S P I  (41i M S P ( 5 0 , 4 )  v T H S P ( 5 3 . 4 )  
CUMMJN / t i L C O C M /  EM( w r 4 l  , I N 1  T ( 4 )  
ENTKY dl 1(M 9 THETA r D  TUN, I NF I 
I N  T t G E K  dL DA T v A A N b K  ,E +.SOK t STKF N 9 S L C K U  s SUKV L, A A T  EHP ,SURF ,SU KFBV 9 

1F I K S T  ,(IPP t K ,  UPPKBV,  S l s  ST, SKW 

K E A L  K ,KAk t L AMt)DA 9 L M A X  ,MH v MLE MK t M S L  ,MSP MV s MV I M 1  

R E A L  M ,MMLE, MSPMMsMMMSY 

SURF= 1 

S I G N =  1. 

GU TO 10 

EN TKY BL 2 1 M t T H E  TA 11)TD M t  INF ) 

SURF= i 

S I G N =  -1. 

GU TU IO 

ENTRY tiL 3(M ,THE TA t O T U  Ms I NF I 

S U K f =  3 

S I G N =  1. 

GU TU 10 

ENTKY B L 4 L M , T H E T A t U T D M p I N F l  

S U K f =  4 

SIGIU- -1. 


10 INF= 0 
N S P =  i \ l S P I ( S U K f I  
I F  I I N I T ( S U R k ) . E U . l 3 l  GO TO 30 
I N  I T (  S L R f  I =  13 

C 

C I h I T I A L  C A L C U L A T I O N  UF F I R S T  AND L A S T  S P L I N E  P U I N T S  O N  OLAOE 

C 

A A  = & � T I L  S U K F ) / S 7 . 2 9 5 7 7 9  
AA = S I N I A A I  
M S P ( 1 , S U K F l  = R I ( S U K F ) * ( l . - S I G N * A A )  
dt+ = S U K T ~i . - a ~ * 4 2 1  
T H S P I  1,SI)KFl  = S I L N + b B * k I ( S U R F I / R M I  ( S U i ( f )  
B E T I (  S U K F )  = A A / B B / K i d I  ( S U K F I  
AA = d � T U ( S U K F I / 5 7 . 2 9 5 7 7 9  
A A  = S I N ( A A 1  
M S P L i J S P , S U K F I  = L H U K d (  SURF ) - R O ( S U R F I + ( l . + S I G N ~ A A l  
t ) ~= S W T ( ~ . - A A * + Z )  
T H S P ( N  S P ,  S U K F I  = S F G K i  b U R f  I t S I G h + B B * R O ( S U K F l  / R H U ( S U R F l  
8 t l U (  S L K I - I  = A A / B a / R # O I S U R F I  
Uir  20 I A z l r N S P  
MSP ( I A t S U R F  I = M SI' 1 I A  S UKF 1 +MLE 1 S UKF I 

20 T H 5 P I  I A , S U K F  I =  T H S P ( I A , S U K I - I + T H L E ( S U R F I  
C A L L  SPL J i2(MSP 1 1, SURF 1 ,THSP ( 1  SURF I , B E T I  1 SURF 
1 AAA, E#(  1, SURF I 1  


I F ( t i L O U T . L E . 0 )  GO TO 30 

I F  1 SUKF �6). 1) WK I TE (6 1OUOI 

W R l T E L  t, 1010 1 SURF 

W K I T t  ( 6 , i O L O l  ( M S P ( I A i S U K h 1  , T H S P I I A s S U R F I  t A A A  


1I A =  1, iY SP 1 
C 
C B L P O E  Lc) iJRDII \ IATE C A L L U L I T I O N  
C 

30 K K  = 2 
I F  (M.GT.MSP(1,SUKF)J  GO TO 50  

L 

C A T  L E A D I N G  EUGE R A D I U S  

C 


M N L E - M-MLEt  SURF) 
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I F  (MHLE.LT.-OMLKI LO TO 90 
HMLEx P M A X l I  O.,flHLE) 
THETA= SUKT(MHLE*(2 . *RI (  S U R F I - f l M L E ) ) * S I G N  
I F  LTHETA.EU.0.) GO TO 40 
RMH= K I( SURF )-mnLE 
DT OH= RM 'I/THE TA /RM I ( SURF ) 
THETA= THETA/RHI(SURF)+THLE(SURFI 
KETUKN 

40 	 I N F =  1 
OTOM = l . E l O * S I G N  
THETA= THLE( SURF) 
RETURN 

C 

C ALONG S P L I N E  CURVE 
C 

50 I F  (M.LE.f lSP(KKsSURFII  GO TO 6 0  
I F  (,KK.GE.NSP) GO TO 70 
KK = h K t 1  
Go TO 50 

60 S= HSP (KK t SURF ) - f l S P  (KK-1 ,  SUKF ) 
E H K f l l =  Eflt  KK- 1, SURF I 
E M =  EMLKKvSURF) 
flSPNH= MSP(KKsSUKFI -H 
MMMSP= M-HSP(KK-1.SURF 1 
THK- TbSP (KK ,SURF ) / S  
T H K H l =  THSP( KK-1, S u i F )  / S
THETA= EMKMl*MSPflM**3/6. / S  + EHK*MMMSP**3/6./S t (THK-EMK*S/6. ) *  

lH f lHSP+(THKHl -EMKf l l *S /6 .  )+MSPHfl 
OTOEI= -EMK#l+HSPflH**2/2. / S  + EMK*HMHSP**Z/Z./S + THK-THKMl-( EMK

l E H K H l ) * S / 6 .  
HETURN 

C 
C A T  T R A I L I N b  E D G E  R A U I U S  
c 

7 0  CHM= Cf f lKDI  SUlF  )+MLE( SUKF j-14 
i F  LCMM.LT.-UHLR) GO TO 90 
CHM= AMAX 1 1O., CMH) 

THETA= S1A T I  CHM* ( 2 .*RU SURF ) -C MM) I * S I G N  

I F  (THETA.EQ.0.) GO TO 80 

RHH = RO( SURF I-Cflfl  

DTUH = -RHM/THETA/RHO( SURF) 

THETA = 5 T G R ( S U R F l t T H E T A / K H O ( S U R F I t T H L E ( S U R F )  

RETURN 


8 0  	I N F =  1 
OTDM = - 1 . E l W S I G N  
THETA= THLEt  SURF )+STGK (SURF1 
RETURN 

C 

C ERROR RETUKY 

C 

90 W R I T E L t r l 0 3 0 )  LER(21*M,SUKF 
S I O P  

1000 FURHAT ( lH1,13Xe33HtJLAOE DATA A T  I N P U T  S P L I N E  P O I N T S )  
1010 FORMAT l 1 H L  t 1 7 X  16HCJL4DE SURFACE v i  41 
1020 FORHAT ( 7 X  9 lHMvlOX,5HTHETA ~ ~ O X ~ ~ O H O ~ R I V A T I V E I ~ X I ~ O H ~ N DDERIV. / 

1( 4G15. 51 1 
1030 FORMAT L 1 4 H L e L C U  L A L L  NU. , I 3 / 3 3 H  M COOROINATE I S  NOT W I T H I N  BLADE/ 

1 4 H  fl =,G14.6.10X,bHSURF =rG14.61 
EN0 

F U N C T I W  I P F ( I t 4 v I T )  
COHHON / I N P /  GAMSA K t T I P  .RHO1 P ,WTFL VUTFLSPSOHEGAI ORFv BET A I  ,BETA09 

1HB 11M B0,WB I2,flBO2.Mfl s N B B I  s NBL t NR SP v HR ( 50) v RMS P ( 5 0 )  ,BES P( 50 t 

2tJL OAT AANUK. ER SOR, STRF N t SLCKO v 1N T V L  9 SURVL 
COMHON /CALCON/ MB I M l  t HB I P  1t f l 8 O M l  r M O P 1  ,M B I Z M l  ,HBI 2 P 1  I H602M11 

l H B O 2 P l  ,HqMl,HM lmHM2rHH3vHT ,OTLR tOflLR ,PITCH ,C P,tXPON,TdWvCPT I P. 
ZTGRUGt ?til 9 TB 0,LAMBDA ,TWL v 1T H I  N ,I TMAX s N I  P , I  MS ( 4  I v BV ( 4  ) t HV I 100 1, 
3 I V (  1 0 1 1 , I T V L  1 0 0 , 4 1 , T V ( 1 0 0 , 4 l  sOTOMV(100,41 ~ B E T A V ( l J O v 4 1 .  
4 n H (  1 0 0 ~ 4 ) ~ O T D f l H ( 1 0 0 ~ 4 ~,BETAH(100,41  ,Kf lH(100,4) t B E H l l 0 3 t 4 I r  
5RH( 100 ) r d  � 1  100)tDBUM( 100)r S A L ( 1 0 0 I  ,AAA ( 1 0 0 )

I P  F = 1V( I M  4 + I T - I TVL I H 1 1  I - 1 T V (  I M ~ 3 )-10000 
I F (  IM.LT.WBI2.OR. I f l .GT .HB0)  RETURN 
I P F  = 1V( I H ) + I T - I T V ( I H r l )  
I F (  IT .GE. ITV( I f l ,3 ) )  IYF = I P F - I T V ~ I M ~ 3 ) + 1 T V L I f l ~ 4 ~ + 1  
RETURN 
END 
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Subroutine MHORIZ 

Subroutine MHORIZ calculates the m-coordinates of intersections of all horizontal 
mesh lines with a blade surface. It locates points of intersection, by checking the ITV 
array (see main dictionary). If ITV changes between adjacent vertical lines, there must 
be a horizontal mesh line intersection between those vertical lines. ROOT is called to 
calculate the m-coordinate of the intersection. The input arguments for MHORIZ are as 
follow s: 

MV array of m-coordinates of vertical mesh lines 

ITV same as ITV of main dictionary, but for a particular surface 

BL subroutine giving blade 6-coordinate as function of m (BL may be BL1, BL2, 
BL3, or  BL4 in the calling statement. These are the entry points of BLCD. ) 

MBI value of IM at first vertical mesh line to be checked 

MBO value of IM at last vertical mesh line to be checked 

IT0 value of IT at the origin of coordinates at leading edge of front blade 

HT mesh spacing in 6 -direction 

DTLR tolerance in 6 -direction 

KODE code variable to indicate whether blade surface is upper o r  lower; KODE = 0 for 
upper blade surface, KODE = 1 for lower blade surface 

MRTS integer switch indicating infinite slopes at leading or  trailing edge of a blade sur
f ace 

The output arguments for MHORIZ a re  as follows: 

J counter indicating current number of intersections of horizontal mesh lines 
with a given blade surface 

MH m-coordinate of intersection of horizontal mesh line with blade 

DTDMH slope de/dm where horizontal mesh line meets blade 

The internal variables for MHORIZ are as follows: 

IM vertical mesh line number 

ITIND counter of horizontal mesh lines which intersect blades between two consecu
tive vertical mesh lines 

MVIM MV at left end of horizontal interval 

TI 0 -coordinate of horizontal mesh line which intersects blade 
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S U B K U U  T I NE M HUR I21M V t  I T V  t BL sMB I t N30 v I TO,  H T  t DT L R  t KO DE t J t MHt DT DMHt  
l M K T S  1 

M M R J L  C A L C U L A T t S  M C O O K D I N A T E S  OF I N T E R S E C T 1  ONS OF A L L  H O K I Z O N T A L  

M E S H  L I N E S  W I T H  A B L A D E  S W F A C E  

K U D E  = 0 FOR U P P k K  B L A U l r  S U K F A t E  

K O D E  = 1 W K  L u n t R  B L A D E  SURFACE 


CUMMUN SK W t  I TEK t 1  END L t K  L Z  ) ,NEK L 21 

D I M E N S  ION M V (  100), I T V ( 1 0 0 1  t M H ( L 0 O I  r D T D M i ( L 0 3 1  

I N T E G E R  I j L D A T t  A A N O K t E R  WK i S T K F N ,  SLCRD, S U k V L s  A A T E M P  ,SLJRFtSUKFBV 9 

1 F I R S T t  UPPEflt U P P R B V i S l  t S T t  Sun 
H E A L  K ,KAK tL AMbDA S L M A X ~ M Ht MLE t MK t M S L  tMSPtM V t  M V I  MI, 
R � A L  M V I M  
E X T E R N A L  bL 
I F  LHBI .GE.WB0)  K E T U K N  
l M =  HBI 

10 I T I N D =  0 

20 IF  1 I T V L  I M + l I - I T V ( I M I - I T I N D )  3 O t 4 0 ~ 5 0  

30 J= J+1 


T I =  F L O A T  ( I T V (  1 M + 1 ) - I TO- I T I  ND+ &OLE I+HT 
I T  I N D =  I T  1 N D - 1  
M V I M  = M V L  1M 1 
I F  L Hf l  IS. EU .11 M V I  M = H V I  M+ L MV t I Elc 1 ) - M V I  M I  /1330. 
C A L L  KUUT ( N V I M ~ N V ~ I N + 1 1s T I s B L s D T L K t M H ( J 1  t D T D M H ( J ) )  
GO TO 20~~ ~. 

40 IM= I M  t L 
M R T S  = 0 
I F  If4 .tu .MBO I R E T U R N  
GO TO 10 

50 J= J + l  
T I =  FL U A T  ( I T  VL I M  t - I TU+ I T I  ND+ K O U E  I*H T 
I T  I N D =  I T  I N O + l  
MV IM = M V (  IN I 
I F  ( M R  73. tu. 1) M V I M  = MV1 H+ ( MV( I M + l )  -MVI  
C A L L  RUOT L Y V I M i H V ( I M + l )  , T I , B L t D T L K t M H L J )  
GO Tu io 
EN D 

Subroutine DENSTY 

M I  /1330. 
t D T D M H ( J )  1 

Subroutine DENSTY calculates the subsonic relative velocity W and corresponding 
density p that result in a given value of the mass flow parameter pW. This is done by 
using equations (B5) and (B6),which a r e  an algorithm based on Newton's method. 

E the value of pW is too large, there is no solution. In this case an e r ro r  message 
is printed, Wcr and the corresponding density are calculated as output, and the program 
continues. Thus, it is possible to get an approximate solution even though there may be 
one or two points with too large a value for pW. The input arguments for DENSTY are 
as follows: 

RHOW PW 

RHO initial estimate for  p (phmay be used) 

TWLMR 2wX - ( w r )2 

CPTIP 2c T'
P i n  

EXPON l/(y - 1) 
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RHOIP P$ 

GAM Y 

AR R 

TIP Th 

VTOL convergence tolerance on relative change in W 

The output arguments for DENSTY are as follows: 

RHO P 

VEL W 

The internal variables for  DENSTY are as follows: 

RHOT newly calculated estimate for p 

RHOWP 

TEMP 

TGROG 

TTIP T / T ~  

VELNEW newly calculated estimate for W 

SUBROUTINE OENSTY(RHUWtRHO*VEL ,ThLHRpCPTI  P s E X P G k r R H O I P  ,CAM, AH, T I P J  
c 
C DENSTY L A L C U L A T E S  O E N S I T Y  ANU V E L O C I T Y  FRCM THE WEIGHT FLOW PARAPIETER 
C D E N S I T Y  T I M E S  V t L i K I T Y  
C 

COMMON SRY, I TER t LEN0 v L � R  (2I t NER (21 

VEL = RHJW/KW 

I F  (VCL.Nk.0.) G J  TO 10 

RHO = RHUIP 

RETURN 


10 T T I P  = l . - (VEL**Z+TWLMR)/CPTIP 
IF(TTIP.LT.0.)  GO TO 30 
TEHP TT  IP**(EXPUN-I.  I 
R W T  = R H O I P * T E H P * T T I P  
RHUWP = -VEL**Z/GAM*%tiOI P / A R * T E H P / T I  P+RHOT 
If(RHOWP.LE.O.1 GO TU 30 
VELNEN = VEL+(RHUU-KHOT*VELJ/RHOUP 
IF (  A B S L V t L N t  U- VEL t/VELNEW.LT. .0001) GO TO 20 
VEL = VELNEU 
GO TO 10 

20 	VEL = VELNEW 
RHO = RH)Y/VEL 
RETURN 

30 	TGKOG = Z.*GAM*AR/(GAM+l.) 
VEL = SL)RT(T I ;RUG*T IP* ( l . -TULHR/CPTIPJ  I 
RHO = R H O l P * ~ l . - ( V E L * * 2 t T W L N R ) / C P T I P I * * E X P O N  
RYMORW = R N U / K H O / V E L  
N E R ( 1 1  = N E R ( l ) + l  
WRITE(  t t l O O O l  L E R ( l ) v N E R ( l l r R W M U R W  
IFL NER ( 11 .fU - 5 0  1 STOP 
RETUKN 

1000 FORMAT(16HLOENSTY C A L L  NU. 113/9H N E R ( 1 1  * r 1 3 / 1 0 H  RHO*W IS rF7.4r 
134H T I M E S  THE HAXIMUM VALUE F O R  RHO*U) 

EN 0 
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Subroutine ROOT 

Subroutine ROOT finds a root for  f(x) = y by Newton's method. The function f(x) 
must be defined on a specific interval [a, b] . The values of f (x) are calculated by 
another subroutine (FUNCT). 

The value xktl is determined from xk 
by 

The first  value of x is xo = If xktl is not in the interval, if f'(xk) = 0, o r  if 
f'(x k = x ,  the interval [a, b] is scanned to see if a suitable starting value of x for 
Newton's method can be found. If a root cannot be found in 1000 iterations, a message 
is printed, and the calculations a r e  stopped. 

Subroutine ROOT requires that f(x) be calculated by a FORTRAN subroutine sub
program (FWCT).  Any name may be chosen for  this subroutine. In TANDEM, FUNCT 
is either BL1, BL2, BL3, o r  BL4. The calling sequence is 

FUNCTN, FX, DFX, INF) 

These arguments are defined as follows: 

FX f(x) 

DFX f'b) 

INF used to indicate an infinite derivative: 


0 if  f'(x) is finite 
1 if f'(x) is infinite 

The input arguments for ROOT are as follows: 

a 

B b 

Y y 

FUNCT external subroutine to calculate f(x) 

TOLERS tolerance on solution (x is accepted as a root if lf(x) - y ]  < TOLERY. ) 
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The output arguments for ROOT are as follows: 

X value of x such that f(x) = y 

DFX f'(x) 

S U B H O U T I N E  9 0 0 T l A r R r Y , F U N C T , T O L E R Y t X t D F X f  
C 

C R C O T  F I N E S  A RCOT FCR I F U N C T  M I N U S  Y )  I N  THE I N T E R V A L  ( A P E )  

t 


COYHON S R W , I T E R , I E N D r L E R ( 2 ) , N E R ( 2 )  
I N T E G E R  SRW 

I F  l S R H . E O . 2 1 )  W R I T F l 6 r 1 0 0 0 )  A I B ~ Y ~ T O L E R Y  

T O L E R X z  ( B - A ) / 1 0 0 0 -
A B 2 =  ( A + R ) / 2 .  
I = O  

X = A  

LO C A L L  F U N C T ( X , F X r O F X , I N F )  
I F  l S R W . E O . 2 1 )  W R I T E ( 6 r 1 0 1 0 )  I , X , F X , C F X * I N F  
IF ( A B S ( Y - F X ) . L T . T O L E R Y )  RETURN 
I F  l I . G E . 1 0 0 0 )  GC TO 30 

I =  1+1 

IF ( I N F . N E . 0  ,OR. 0FX.EQ.O.) GO TO 20 

X= ( Y - F X ) / O F X + X  

I F  1X.GE.A .AND. X - L E - 6 )  GO TO LO 

X = A + T O L E R X * F L O A T (  I ) 
I F I I - E Q . 1 )  X = B 
GO T C  10 

20 I F  l X . L T . A B 2 )  X = X + T O L E R X  
I F  IX ,GE.ABZ)  X=X-TOLERX 
GO TO 10 

30 W R I T E ( 6 r 1 0 2 0 )  L E R I Z ) , A * B * Y  
STOP 

1000 FORMAT ( 3 2 H l I N P U T  ARGUMENTS FOR ROOT -- A = G 1 3 . 5 r 3 X r 3 H R  = r G 1 3 . 5 ,
1 3 X 1 3 H Y  = r C l 3 . 5 r 3 X 1 8 H T D L E R Y  = r G 1 3 . 5 / 1 7 H  I T E R - NO. X t  1 7 x 1  
Z Z H F X ~ ~ ~ X ~ ~ H C F X . ~ ~ X I ~ H I N F )  


1010 FORMAT 1 5 X , 1 3 , G 1 6 . 5 r 2 G 1 8 . 5 , I 6 )  
1020 FORMAT ( 1 4 H L R O O T  C A L L  N O . . I 3 / 4 7 H  ROOT HAS F A I L E D  TC CONVERGE I N  10 

100 Z T E R A T I O N S / 4 H  A = , G 1 4 . 6 , l O X p 3 H B  = r G 1 4 - 6 r l O X , 3 H Y  z r G 1 4 . 6 )  
ENC 

Subroutine SPLINE 

This subroutine is based on the cubic spline curve. SPLINE solves a tridiagonal 
matrix equation given in reference 9 to obtain the coefficients for the piecewise cubic 
polynomial function giving the spline f i t  curve. SPLINE is based on the end condition 
that the second derivative at either end point is one-half that at the next spline point. 
The input variables for  SPLINE a r e  as follows: 

X array of ordinates 

Y a r ray  of function values corresponding to X 

N number of X and Y values given 



The output variables for  SPLINE a r e  as follows: 

SLOPE array of first derivatives 

EM array of second derivatives 

If Q = 13 in COMMON, input and output data for SPLINE a r e  printed. This is useful 
in debugging. 

S P L I N E  P O I N T S  
END P O I N T  AND 

.H(lOJ) rSB(100)r 


15X t 

93 




Subroutine S PLN22 

This subroutine is the same as SPLINE, except that, for  the end conditions, the 
slopes are specified. The input variables for SPLN22 are as follows: 

X ar ray  of ordinates 

Y array of function values 

Y 1P slope at first point 

YNP slope at last point 

N number of X and Y values given 

The output variables for SPLN22 a r e  as follows: 

SLOPE ar ray  of first derivatives 

EM array of second derivatives 

If Q = 18 in COMMON, input and output data fo r  SPLN22 a re  printed. This is use
ful in debugging. 
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S ubroutine S PLlNT 

This subroutine is based on the cubic spline curve, with the same end conditions as 
SPLINE. The c&ic spline curve is then used for interpolation. The input variables for  
SPLINT a re  as follows: 

array of spline point ordinates 

Y array of function values at spline points 

N number of X and Y values given 

Z array of ordinates at which interpolated function values a re  desired 

MAX number of Z values given 

The output variable for SPLINT is as follows: 

YINT array of interpolated function values 

If Q = 16 in COMMON, o r  if some element of the z ar ray  falls outside of the inter
val for the x array, input and output data for SPLINT a r e  printed. This is useful in de
bugging. 

95 


X 



SUBKUU 1 I,\ E S P L  I N T  I X 1 Y r N  12 ,MAX p Y I  N T  ,OYDXl 
C 

C S P L I N T  C A L C U L A T E S  I N T t R P d L A T E U  P O I N T S  AND D E R I V A T I V E S  

C F U R  A S P L I N E  C d K V t  

C E N 0  CUNUITIUN - SECOND D E R I V A T I V E S  A K t  THE SAM& AT E N 0  P O I N T  A N 0  

C A C J A C t N T  P O I N T  

C 


CJMMOI~  U/t%lX/SL100)  r A I l O U )  il311001 r C 1 1 0 0 )  r F ( 1 0 O I  sW1103) s S M ( L O 0 1 r  
1 G I  l U O ) r E M ( 1 0 0 )  

D i P i E N S l U Y  X I N ,  r Y ( N 1  r Z I H A X )  r Y I N T l M A X 1  r D Y C J X I H A X )  
I N T E L E . 4  U 

I f ( H A X . L t . 0 1  R t T U R N  

iiI = c) 

DO ~ L I  I = Z , N  


A0 51 1 l = X L  I ) - X I  I- 1) 
NO=N- 1 
I F ( N U . L T . 2 1  GU TL) 30 
00 2U I=2,NO 
A I  I I = S (  Il/O.C 
81 I l = l  5 ( 1 1 + S L 1 + 1 1 1 / 3 . 0  
C (  I I = S ( I + l ) / C . C

20 F (  1 1=1 Y l 1 + 1 ) : Y  L I 1 I / S l  I+1 I 
30 A L N )  = - .5  

B l  1 ) =  1 .o ' 

81 I\) J = 1 .O 
C l l )  = - .5  
F(  ll=O.O 
F l  N J=O .O 
M (  11=t3(11 
SBL 1) = C 1 1  l / u r l l l  
G( 1)=O .O 
OU 40 t = L , l \ l  
ri( I ) = B ( I l - A l  I J * S B l I - l )  
bBL I ) = C l  II / W I I l
GI I ) = (  I I * & (  

1 Y ( 1  - Y l I - l  I ) / S  ( I I 

40 F (  I ) - A (  1-11 l / r i L I )  
EM1 N = ti4 N 
DU 50 I = Z r N  
K = N  tl- I 

5 0  	E M ( K I = G I I (  I - S B l K l * E M ( K + 1 1  
DO 140 I = l s M A X  
K = 2  
IFILL I ) - X l  1 ) )  7 0 ~ 6 0 r 9 0  

60 Y I N T (  I ) = Y (  1) 
GO TU 130 

7 0  I f ( L (  I l . b E . 1  1. l + X 1 1 1 - .  1 * X ( L l  I I G O  TO 120 
W K I T E  1 6 , 1 0 0 U )  2 1 1 )  
i )  = 16 
GO TU 120 

80 	K = N  
I F I L I  I ).LE.( l . l * X l N ) - . l * X I k l )  J 1 b U  TU 1 2 0  
W k l T t  ( 6 t l O b O )  L ( I 1  
Q = 16  
GU TU 120 

90 I F I L I  I ) - X ( K )  1201100rL10 
100 Y I N T ( I I = Y l K J  

GO TIJ 130 
110 U = K + 1  

I F l K - N  I 9 C r  9 t i r  e0 
1 2 6  Y I N T I  I = t M  ( K - l l *  1 XL U l - Z (  I I )**3/6.  /S I K ) + E M ( K )  * l Z l  I l . -X ( K - 1 )  ) 4*3 /  6. 

1 / S L K  l + ( Y ( K  ) / S L K l - k M I K l  * S ( k )  /6. I *  lL11 1 - X I K - 1 1  ) +  ( Y  ( K - l l / S ( K I - E M l  I(-1) 
2 * S ( ~ ) / t . J * l X ( K ) - L ( I )  1 

13G UYUX( I )=- EM1 K- 1I * (  X I K I - L I  I 1  1**2 /2. U / S ( K ) + E b l l K )  * ( X I  K - 1  J - L l  I 1  1 **2/2. 
1O/Sl K ) t l  Y 1 K ) -Y 1 K- 1I 1 / S  I K  1 - ( tM I  K )  -t M ( K-11  I 4;s (K)/ 6  - 3  

140 C O N T l N U t  
M X A  = M A X O ( V . M A X )  
I F 1  U.EU.16) MK I TE I t1.10101 N ,MAX, 1X ( 1  I r Y ( I  I r L 1  I I 1 Y I  NT I I ) 1 UY DX( 1 1 .  

l I =  1t M X A I  
Ll = 1 1 1  
KETUKN 

1000 fU.4MAT ( 5 4 H  SPL I IUT  USEU FUR E X T R A P O L A T I O N .  E X T K A P O L A T E D  V A L U E  = t 

lGl4.6 i 
lGl0 FURMAT 1 2 k ~ i l l H N U .  LIF P O I N T S  GI V t I r  = . I 3  r 3 0 H 1  NO. GF I N T E R P O L A T E D  PO 

1I N  TS =, I 3 /  1UX p l H X r  1 Y X  1 lrl Y t 1 6 X r  11H X - I  NTEKPOL. 99 X I  11H Y - I  NT �RPOL. . 
28x1 1 4 H C Y U x - I N T t K P O L . / (  5ELO.8)  I 

EN U 

96 



Lewis Library Subroutine TIME1 

This subroutine is part  of the Lewis Systems Library. TIMEl gives the time in clock 
pulses of 1/60th of a second. To get elapsed time in minutes, the clock must be read 
twice and the difference divided by 3600. TIMEl may be replaced by a user's clock read
ing subroutine, or  it may be removed from the program. 

CONCLUDING REMARKS 

It is not always possible to obtain sufficient detail on some critical par ts  of the blade 
surfaces by using the TANDEM program. Due to storage limitations on the computer, 
grid spacing may be too large to give the desired detail around small  leading- o r  trailing-
edge radii o r  within slot regions. For  this reason, a computer program called MAGNFY 
has been written to obtain a solution on a finer mesh in a small  part of the blade-to-blade 
region. MAGNFY is described in reference 13. 

After TANDEM was written, it was realized that the TANDEM program was sig
nificantly improved over the 2DCP program (ref. 3) for a single unslotted blade. Hence, 
TANDEM w a s  modified to solve the same problem as 2DCP. This modified program, 
called TURBLE, is described in reference 14. The coding in TURBLE is simpler and 
more foolproof than that of 2DCP. Also, TURBLE allows more interior mesh points in 
the solution region, and has its own e r ro r  package independent of the Lewis computer 
system. It is intended that TURBLE should supersede both the 2DCP and the 2DINCP 
(ref. 11) programs. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, November 4, 1968, 
126- 15-02 -3  1-22. 
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APPENDIX A 

FINITE- DIFFERENCE APPROXIMATION 

An approximate numerical solution for the stream function u can be obtained by 
finite-difference methods. These methods involve first establishing a rectangular grid 
of mesh points in the region, as shown in figure 14. Then at each point where the value 
of the stream function is unknown, a finite-difference approximation to equation (1)can 
be written. Adjacent to the boundary, the boundary conditions a r e  included. If there are 
n unknown values, n nonlinear equations a r e  obtained in n unknowns. The equations 
a r e  nonlinear since the coefficients involve the density, which depends on the solution. 
The equations may be solved by an iterative procedure, with two levels of iteration. The 
inner iteration solves a linearized equation, and the outer iteration makes corrections to 
the linearized equation so that the solution converges to the solution of the original non
linear equation. 

First, the inlet absolute total density is used for  determining the coefficients of the 
finite-difference approximation to equation (1). This results in n linear equations. 
These linear equations may be solved iteratively by successive overrelaxation, as de
scribed in references 10 and ll. This solution is an approximate solution of equation (1) 
for the stream function. This approximate solution may be differentiated numerically to 
obtain approximate velocities from equations (2) and (3).  The approximate velocities are 
then used to obtain a better approximation to the density at each point, and the coefficients 
of equation (1)a re  recalculated by using new densities. Thus, the solution to the non
linear equation (1)is approached by a sequence of solutions to linear equations. 

A typical mesh point with the numbering used to indicate neighboring mesh points is 
shown in figure 17. The value of the stream function o r  the other variables at 0 is denoted 

e 
3.+ 4 

Figure 17. - Notation for adjacent mesh points 
and mesh spaces. 
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by using the subscript 0, and similarly for the neighboring points. It can be shown 
(ref. 10) that equation (1)can be approximated by 

where hl = ro(Ae)l and hz = r0(Ae)2 (since ro = r1 = rz). In setting up equations for 
solution, the coefficients of the ui in equation (Al) must be calculated. This w a s  done 
by expressing equation (Al) as 

4 
uo = aiui + IC,, 

i=1 

where 
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This equation can be used at all interior mesh points, and for  mesh points adjacent to the 
blade surfaces BC, ML, and so forth. 

Along the boundary where the value of u is unknown, the equation wil l  vary. For 
example, along the upstream boundary, ~ U / & , I  is known, and a finite-difference approxi
mation to (au/aq), in equation (4) gives 

P, 
uo = u4 + h4(;)in = u4 + h4( srin.-) (A3 

Similarly, along the downstream boundary, equation (5) gives 

uo = u3 + h3(g )  = u3 - h3( pout) 
out Srout 

For the points along AB, equations can be derived by using the periodic boundary con
dition. If the point 0 (fig. 18) is on the boundary between A and B, the point 1is outside 
the boundary. However, it is known that u1 = ul, - 1 where the point I, s is a dis
tance s above point 1in the 8-direction, as shown in figure 18. Substituting this con
dition in equation (A2) gives 

4 
uo = alul, + aiui - al + ko 

1= 

N 1, 5 7  M 

\ 
u1 = u1, - 1 

1 
I 3 ! 

Figure 18. -Mesh point on line AB. 
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where ai is the same as defined in equation (A2). 
The points along MN are .not part of the solution regions, since the value of the 

stream function at each of them is just 1greater than the corresponding point along AB. 
The equation for the first mesh line below NM must be modified, however. In this case 

uz = u2, - s  + 1, where the point 2, -s  is a distance s below point 2 in the negative 0 
direction, as indicated in figure 19. Substituting this condition into equation (A2) gives 

In a similar manner, equations can be derived along the other boundaries (FG, HI, 
CD, and KL; and DE and JK for the nonoverlapping case, fig. 4)where a periodic condi
tion exists. Rather than give the equation for every possible case, it is easier to state 
the rule for modifying equation (A2). If an adjacent mesh point i (fig. 17) is outside the 
mesh region (along a periodic boundary), two changes must be made: 

(1)Change the subscript of u from i to i, s if the periodic boundary is along the 
bottom of the mesh region. Change the i to i, - s  along the top of the region. 

(2) Subtract ai from ko if the periodic boundary is along the bottom of the mesh 
region. Add ai to ko along the top of the region. 

One of equations (A2) to (A6) can be applied to each mesh point for which the stream 
function is unknown in the region of interest, giving the same number of equations as there 
are unknowns. These points where the stream function is unknown are referred to simply 
as unknown mesh points. 

N 

u2 = u2 -s + 1 
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u 

This system of n equations is represented in matrix form as 

where = (ul, . . . , un)T is a vector whose components are the unknown values of the-
stream function, A is the coefficient matrix of equations (A2)to (A6), and -k = 

(kl, * , kn)T is the vector whose components are the known constants of equa
tions (A2) to (A6). If the mesh size is sufficiently small, the coefficients al to a4 in 
equation (A2)will  all be positive (for any given continuous functions b and p). In this 
case, the coefficient matrix A is irreducibly diagonally dominant, and there is a unique 
solution to equation (A2)(ref. 10). 

The solution to equation (A2) is obtained by using two levels of iteration. The inner 
iteration consists of solving equation (A2) by using fixed values of p based on the pre
vious inner iteration. The inner iteration is successive overrelaxation using an optimum 
overrelaxation factor 0, as described in reference 11 (p. 77). The iterative procedure 
is given by 

for i = 1 , 2 , .  ..,n (A8) 

where 0 is the overrelaxation factor. The a.. are the elements of the matrix A, and 
13

the ki a r e  the components of the vector -k of equation (A?). The up are  the initial es
timates of the ui and are obtained from the previous inner iteration. 

The outer iteration consists of making corrections to the coefficients so as to finally 
obtain a solution to the nonlinear equation (1). The optimum value of 51 can be deter
mined as described in reference 11 (appendix B). The optimum value of 0 wil l  vary 
slightly each time the coefficients a r e  corrected; however, the change is usually small, 
and it has been adequate to use the same overrelaxation factor for the entire calculation. 
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APPENDIX B 

NUMERICAL TECHNIQUES USED IN PROGRAM 

Calculation of Velocity and Density 

When the stream function u has been calculated, it is then possible to calculate the 
derivatives au/am and au/% by numerical techniques. Then, with equations (2) and 

2(3), andsince W2 = W m  + Wi: values for  pW can be calculated. It is assumed that the 
values of w,  A, r, y ,  cP' 

T$, and p$ are all fixed and known. Then p, and hence 
pW, is a function of W. The product pW has its maximum value when W = Wcr. If 
pW is less than this maximum value, there are two values of W which will  give this 
value of pW, one subsonic and the other supersonic. It is desired to find the subsonic 
value of W corresponding to the given value of pW. The method used is Newton's 
method, which converges quadratically. 

It is necessary to express pW as a function of W. The static temperature T may 
be expressed as a function of W and r by (see ref. 15, eq. (3)) 

T 1 - W2 + 2wA - (or)2 
- =  

T$ 2cpTk 

With the assumption of isentropic flow 

1 


and the following equation is obtained: 

For Newton's method, the derivative with respect to W is needed, 
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Suppose that (pW),, is a given value of pW. A first estimate of W is 

wo = @W)giv
Ph 

Then, using Newton’s method, 

Gow)giv - P(Wn)Wn 
n = 0 ,  1, 2, . . .wn+l = wn + dbW) I- ‘ I  

Since the convergence is quadratic, only a few iterations are needed, and the relative 
change in Wn is an excellent measure of the relative e r ro r  in Wn. If an estimate for  
W is available from a previous iteration, this value is used for Wo instead of using 
equation (B5). The algorithm given by equation (B6) is done by subroutine DENSTY. 

Calculation of Prerotation A 

The input information f r the program determines the valLe of h = (rVe)in. The 
average value of @W)le can be calculated by 

where p,, is the average value of P across  BM. The value of W can be estimated by 
dividing this value of ( P W ) ~by p k .  Then h can be estimated by 

where Wle is the average value of W across  BM. From this a better value of ple is 
calculated by 
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Use of this value of ple gives a better estimate of the value of Wle, and then iteration 
can be used with equations (B8) and (B9) until there is a negligible change in pie. This 
calculation also gives the value of Wle along BM. These calculations are performed in 
PRECAL. 

Calculation of Crit ical Relative Velocity Wcr 

For reference, the critical relative velocity Wcr is calculated at blade leading and 
trailing edges. This is given by 

where 

2wh - (wr )2 
T" = Tin - 2c

P 

This calculation is performed by PRECAL. 

Calculation of Maximum Value of Mass Flow Parameter pW 

The mass  flow parameter pW attains its maximum value when W = Wcr. For  ref
erence, the maximum values of pW along BM and along FI are computed by the program. 
The maximum value of pW is calculated by 
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where Wcr is calculated by equations (B10) and (B11). 

Calculation of Flow Angles p along AN and GH 

If the radius o r  stream-channel thickness b is not constant in the meridional direc
tion, the free-stream inlet and outlet flow angles p change along the meridional axis. 
(By free-stream velocity or  flow angle we mean the velocity or  angle that would exist at 
a point of the stream channel based on conservation of angular momentum, either up
stream o r  downstream of blade). The following relations hold for free-stream condi
tions: 

t a n P = -we 

We -- V  8 - w r  

r V  =Constante 
wm r 

From this we can derive the following equation for the free-stream angle /3 at any point 
along the meridional axis, when it is known at some other reference coordinate of 
m = m*. 

Equation (B14)may be used at either inlet or outlet to calculate pin or  pout. This 
requires iteration, since p is not known until /3 is known. 

Equation for Leading- and Trailing-Edge Radii 

The equation for the leading- and trailing-edge radii is needed. If the radius r were 
constant, 
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where R is the leading- or trailing-edge radius and m*, e* are the coordinates of the 
center of the radius. Since r changes by a relatively small amount on this circle, it 
was  deemed,adequate to use this equation with r taken at the leading o r  trailing edge. 
Equation (B15) is used by the program to calculate coordinates on the leading- and trailing-
edge radii. It is also used to calculate the points of tangency to the spline curves de
scribing the rest of the blade surfaces, and to calculate slopes on the leading- and trailing-
edge radii. 

Calculation of Surface Length 

It is often desired to plot the velocities as a function of blade-surface length. For 
convenience, the approximate blade-surface length is calculated by the program. The 
calculation is based on straight-line distances between each vertical grid line on the blade 
surface. If hi is the spacing between vertical grid lines, ri the radius at the ith verti
cal  grid line, and Bi the coordinate of the ith vertical grid line, the surface length Sn 
to the nth grid line is approximately 

This may be in e r ro r  near the leading o r  trailing edge, but is quite accurate over most of 
the blade surface. 
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